【摘要】第一篇:函數(shù)的單調(diào)性反思 函數(shù)的單調(diào)性反思 積分學(xué)、微分方程乃至泛函分析等高等學(xué)校開設(shè)的數(shù)學(xué)基礎(chǔ)課程,無一不是以函數(shù)作為基本函數(shù)的單調(diào)性是函數(shù)眾多性質(zhì)中的重要性質(zhì)之一,函數(shù)的單調(diào)性一節(jié)中的知識(shí)是今...
2024-11-04 01:41
【摘要】分類匯編26:函數(shù)的單調(diào)性與導(dǎo)數(shù)一、選擇題.(山東省棗莊三中2014屆高三10月學(xué)情調(diào)查數(shù)學(xué)(理)試題)設(shè)函數(shù)則的單調(diào)減區(qū)間為 ( ?。〢. B. C. D..(山東省煙臺(tái)二中2014屆高三10月月考理科數(shù)學(xué)試題)若函數(shù)在區(qū)間內(nèi)為減函數(shù),在區(qū)間為增函數(shù),則實(shí)數(shù)a的取值范圍是 ( ?。〢. B. C. D.
2025-05-16 05:18
【摘要】《函數(shù)的單調(diào)性與導(dǎo)數(shù)》教學(xué)設(shè)計(jì)教材分析1、內(nèi)容分析??導(dǎo)數(shù)是微積分的核心概念之一,是高中數(shù)學(xué)教材新增知識(shí),在研究函數(shù)性質(zhì)時(shí)有獨(dú)到之處,,是在學(xué)習(xí)了導(dǎo)數(shù)的概念、,又為研究函數(shù)的極值和最值打下了基礎(chǔ).由于學(xué)生在高一已經(jīng)掌握了函數(shù)單調(diào)性的定義,,用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性比用定義要簡(jiǎn)捷的多(尤其對(duì)于三次和三次以上的多項(xiàng)式函數(shù),或圖像難以畫出的函數(shù)而言),充
2025-04-16 23:38
【摘要】學(xué)校樂從中學(xué)年級(jí)高二學(xué)科數(shù)學(xué)導(dǎo)學(xué)案主備審核授課人授課時(shí)間班級(jí)姓名小組課題:函數(shù)的單調(diào)性及最值課型:復(fù)習(xí)課課時(shí):一【學(xué)習(xí)目標(biāo)】理解函數(shù)的單調(diào)性、最大(?。┲导捌鋷缀我饬x【學(xué)習(xí)過程】一、知識(shí)要點(diǎn)
2025-04-16 23:39
【摘要】中國(guó)領(lǐng)先的中小學(xué)教育品牌精銳教育學(xué)科教師輔導(dǎo)講義講義編號(hào)11sh11sx00學(xué)員編號(hào):年級(jí):高二課時(shí)數(shù):3學(xué)員姓名:輔導(dǎo)科目:
2025-08-17 04:57
【摘要】函數(shù)的單調(diào)性(一)選擇題[]A.增函數(shù)B.既不是增函數(shù)又不是減函數(shù)C.減函數(shù)D.既是增函數(shù)又是減函數(shù)2.函數(shù)(1),(2),(3),(4)中在上圍增函數(shù)的有[]A.(1)和(2)B.(2)和(3)C.(3)和(4) D.(1)和(4)3.若y=(2k-1)x+b是R上的減函數(shù),則有[
2025-06-16 04:06
【摘要】函數(shù)的單調(diào)性?1.函數(shù)單調(diào)性的判定.?2.函數(shù)單調(diào)性的證明.?3.函數(shù)單調(diào)性的應(yīng)用.?1.利用已知函數(shù)的單調(diào)性?2.利用函數(shù)圖象?3.復(fù)合函數(shù)的判定方法?4.利用定義一.函數(shù)單調(diào)性的判定方法:例f(x)在實(shí)數(shù)集上是減函數(shù),求f(2x-x2)的單調(diào)區(qū)間以及單調(diào)性
2024-11-07 00:42
【摘要】復(fù)合函數(shù)的單調(diào)性和奇偶性 1、復(fù)合函數(shù)的概念 如果是的函數(shù),又是的函數(shù),即,,那么關(guān)于的函數(shù)叫做函數(shù)和的復(fù)合函數(shù),其中是中間變量,自變量為函數(shù)值為?!±纾汉瘮?shù)是由和復(fù)合而成。2、復(fù)合函數(shù)單調(diào)性復(fù)合函數(shù)單調(diào)性判定方法:定理:設(shè)函數(shù)u=g(x)在區(qū)間M上有意義,函數(shù)y=f(u)在區(qū)間N上有意義,且當(dāng)X∈M時(shí),u∈N。增函數(shù)增函數(shù)增函數(shù)增函
2025-04-04 04:22
【摘要】導(dǎo)數(shù)應(yīng)用:含參函數(shù)的單調(diào)性討論(二)對(duì)函數(shù)(可求導(dǎo)函數(shù))的單調(diào)性討論可歸結(jié)為對(duì)相應(yīng)導(dǎo)函數(shù)在何處正何處負(fù)的討論,若有多個(gè)討論點(diǎn)時(shí),要注意討論層次與順序,一般先根據(jù)參數(shù)對(duì)導(dǎo)函數(shù)類型進(jìn)行分類,從簡(jiǎn)單到復(fù)雜。1、典型例題例1、已知函數(shù),討論函數(shù)的單調(diào)性.分析:討論單調(diào)性就是確定函數(shù)在何區(qū)間上單調(diào)遞增,在何區(qū)間單調(diào)遞減。而確定函數(shù)的增區(qū)間就是確定的解區(qū)間;確定函數(shù)的減區(qū)間就是確定的解
2025-06-20 12:25
【摘要】“函數(shù)的單調(diào)性”教案課題名稱:函數(shù)的單調(diào)性設(shè)計(jì)者:高中1組2小組教材版本:人教版B版教材教學(xué)年級(jí):高一學(xué)生一、教材內(nèi)容分析函數(shù)的單調(diào)性是人教版數(shù)學(xué)必修一第二章第一節(jié)的內(nèi)容。在《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)按(2017年版)》中明確指出,要會(huì)借助函數(shù)圖象,會(huì)用符號(hào)語(yǔ)言表達(dá)函數(shù)的單調(diào)性,理解它們的作用和實(shí)際意義。所以本節(jié)在學(xué)習(xí)函數(shù)單調(diào)性時(shí)要引導(dǎo)學(xué)生借助函數(shù)圖像理解函數(shù)單調(diào)性,
2025-05-11 23:51
【摘要】了解函數(shù)單調(diào)性和導(dǎo)數(shù)的關(guān)系/能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會(huì)求函數(shù)的單調(diào)區(qū)間/了解函數(shù)在某點(diǎn)取得極值的必要條件和充分條件/會(huì)用導(dǎo)數(shù)求函數(shù)的極大值、極小值/會(huì)求閉區(qū)間上函數(shù)的最大值、最小值/會(huì)利用導(dǎo)數(shù)解決某些實(shí)際問題導(dǎo)數(shù)的應(yīng)用1.函數(shù)在某區(qū)間上單調(diào)的充分條件一般地,設(shè)函數(shù)y=f(x)在某個(gè)區(qū)間內(nèi)有導(dǎo)數(shù),如果在這個(gè)區(qū)間內(nèi)y′
2024-09-29 15:55
【摘要】《函數(shù)的單調(diào)性》教學(xué)設(shè)計(jì)麟游縣職業(yè)教育中心張敏鴿【教材依據(jù)】《函數(shù)的單調(diào)性》是高等教育出版社(修訂版)基礎(chǔ)模塊上冊(cè)。是第三章《函數(shù)》中第二節(jié)《函數(shù)性質(zhì)》里面的第一部分內(nèi)容。它是學(xué)生在了解了函數(shù)概念后學(xué)習(xí)的函數(shù)的第一個(gè)性質(zhì),也是第一個(gè)用符號(hào)語(yǔ)言刻畫的概念。一﹑設(shè)計(jì)思路函數(shù)的單調(diào)性為進(jìn)一步學(xué)習(xí)其他性質(zhì)提供了方法和依據(jù)。它既是對(duì)學(xué)過的函數(shù)概念的延續(xù)和拓展,也為將來研
【摘要】第一篇:函數(shù)單調(diào)性教學(xué)與反思 函數(shù)單調(diào)性教學(xué)與反思 教學(xué)內(nèi)容: (一)引入課題 我國(guó)的人口出生率變化曲線(如下圖),請(qǐng)同學(xué)們觀察說出人口出生的大致變化情況。我們可以很方便地從圖象觀察出人口出生...
2024-11-04 01:40
【摘要】一、課內(nèi)訓(xùn)練:1.確定下列函數(shù)的單調(diào)區(qū)間(1)y=x3-9x2+24x(2)y=x-x3(1)解:y′=(x3-9x2+24x)′=3x2-18x+24=3(x-2)(x-4)令3(x-2)(x-4)>0,解得x>4或x<2.∴y=x3-9x2+24x的單調(diào)增區(qū)間是(4,+∞)和(-∞,2)令3(x-2)(x-4)<0,解得2<x<4.∴y=x3-9x2+24x的
2025-03-24 12:17
【摘要】《函數(shù)的單調(diào)性與導(dǎo)數(shù)》同步檢測(cè)一、基礎(chǔ)過關(guān)1.命題甲:對(duì)任意x∈(a,b),有f′(x)0;命題乙:f(x)在(a,b)內(nèi)是單調(diào)遞增的.則甲是乙的______條件.2.函數(shù)f(x)=(x-3)ex的單調(diào)增區(qū)間是________.3.下列函數(shù)中,在(0,+∞)內(nèi)為增函數(shù)的是______.
2024-12-07 20:50