【摘要】//解線性方程組#include#include#include//----------------------------------------------全局變量定義區(qū)constintNumber=15; //方程最大個(gè)數(shù)doublea[Number][Number],b[Number],copy
2025-07-26 10:39
【摘要】第二章矩陣題型歸納及思路提示
2025-08-23 14:09
【摘要】第一節(jié)線性方程組的消元法第二節(jié)矩陣的初等變換第一章線性方程組的消元法和矩陣的初等變換第一節(jié)線性方程組的消元法一、線性方程組的基本概念二、消元法解線性方程組1、線性方程組的初等變換2、利用初等變換解一般線性方程組一、線性方程組的基本概念1.線性方程組的
2025-08-05 10:44
【摘要】第三章向量題型歸納及思路提示
2025-08-23 14:00
【摘要】線代框架之二次型1.定義:二次型(其中,即為對(duì)稱矩陣,)。只含平方項(xiàng)的二次型稱為二次型的標(biāo)準(zhǔn)形(此時(shí)二次型的矩陣為對(duì)角矩陣)經(jīng)過(guò)化為標(biāo)準(zhǔn)形(其中).注:二次型的標(biāo)準(zhǔn)形不是唯一的,與所作的正交變換有關(guān),但非零系數(shù)的個(gè)數(shù)是由,-1,0三個(gè)數(shù)中取值的稱為二次型的規(guī)范形,任意二次型均存在可逆變換化為規(guī)范形。:與合同設(shè)A和B是n階矩陣,若有可逆矩陣C使得,則稱A與B合同。合同的性質(zhì):;合
2025-08-23 13:55
【摘要】1線代框架之行列式和矩陣()000,nTArAnAAAxxAxAAxAAAE??????????????可逆的列(行)向量線性無(wú)關(guān)
2025-01-06 22:11
【摘要】《數(shù)值方法》實(shí)驗(yàn)報(bào)告1線性方程組AX=B的數(shù)值計(jì)算方法實(shí)驗(yàn)【摘要】在自然科學(xué)與工程技術(shù)中很多問(wèn)題的解決常常歸結(jié)為解線性代數(shù)方程組。例如電學(xué)中的網(wǎng)絡(luò)問(wèn)題,船體數(shù)學(xué)放樣中建立三次樣條函數(shù)問(wèn)題,用最小二乘法求實(shí)驗(yàn)數(shù)據(jù)的曲線擬合問(wèn)題,解非線性方程組的問(wèn)題,用差分法或者有限元法解常微分方程,偏微分方程邊值問(wèn)題等都導(dǎo)致求解線性方程組。線性代數(shù)
2025-01-06 21:08
【摘要】泰山學(xué)院信息科學(xué)技術(shù)系DepartmentofInformationScienceandTechnology,TaishanCollege第三章解線性方程組的直接法實(shí)際中,存在大量的解線性方程組的問(wèn)題。很多數(shù)值方法到最后也會(huì)涉及到線性方程組的求解問(wèn)題:如樣條插值的M和m關(guān)系式,曲線擬合的法方程,方程組的Newton迭代
2025-07-23 09:40
【摘要】§非線性方程組的迭代解法§預(yù)備知識(shí)一、一般非線性方程組及其向量表示法11221212(,,,)0(,,,)0()(,,,)0nnnnfxxxfxxxfxxx????????
2025-07-24 07:09
【摘要】西安電子科技大學(xué)理學(xué)院主講:王衛(wèi)衛(wèi)第七章線性方程組的直接解法/*Directmethodsforthesolutionoflinearsystems*/線性方程組:11112211211222221122nnnnnnnnnnaxaxaxbax
2024-12-08 01:07
【摘要】第三章線性代數(shù)方程組及矩陣特征值預(yù)備知識(shí)直接法迭代法不可解問(wèn)題病態(tài)問(wèn)題§一、對(duì)角陣與三角陣1、對(duì)角陣:?diag(A)提取m×n的矩陣A的主對(duì)角線上元素,生成一個(gè)具有min(m,n)個(gè)元素的列向量diag(A,k)提取第
2025-01-19 15:06
【摘要】南昌工程學(xué)院畢業(yè)論文理學(xué)系(院)信息與計(jì)算科學(xué)專業(yè)畢業(yè)論文題目非線性方程組的數(shù)值算法研究學(xué)生姓名張浩浩
2025-05-11 14:29
【摘要】第六章線性方程組的迭代解法§1向量和矩陣的范數(shù)向量的范數(shù)矩陣的范數(shù)§2迭代解法與收斂性迭代解法的構(gòu)造迭代解法的收斂性條件§3常用的三種迭代解法Jacobi迭代法Gauss-Seide
2025-07-21 00:10
【摘要】線代框架之特征值與特征向量:nnA???????設(shè)是階矩陣,如果存在一個(gè)數(shù)及非零的維列向量,使得A=成立,則稱是矩陣A的一個(gè)特征值,稱非零向量是矩陣A屬于?特征值的一個(gè)特征向量。A的特征矩陣EA??.A的特征多項(xiàng)式()E
2025-01-06 22:10
【摘要】實(shí)驗(yàn)一病態(tài)線性代數(shù)方程組的求解輸入m=10可以得到如下表的結(jié)果階數(shù)12345條件數(shù)1+4+5階數(shù)678910條件數(shù)+7+8+10+11+13,分別用Guass消去(LU分解),Jacobi迭代,GS迭代,SOR迭代求解,比較結(jié)果。說(shuō)明:Hx=b,H矩陣可以由matl
2025-08-21 12:04