【摘要】復數(shù)的運算(二)【教學目標】掌握復數(shù)的除法運算,深刻理解它是乘法運算的逆運算;理解并掌握復數(shù)的除法運算實質(zhì)是分母實數(shù)化類問題;體會到知識是生產(chǎn)實踐的需要從而積極主動地建構(gòu)知識體系.【教學重點】復數(shù)除法運算規(guī)則【教學難點】分母實數(shù)化一、課前預習:(教材95頁)1.已知),(Rbabiaz???,則?z1
2024-11-19 10:27
【摘要】定積分一、基礎過關1.下列命題不正確的是()A.若f(x)是連續(xù)的奇函數(shù),則?a-af(x)dx=0B.若f(x)是連續(xù)的偶函數(shù),則?a-af(x)dx=2?a0f(x)dxC.若f(x)在[a,b]上連續(xù)且恒正,則?baf(x)dx0D.若f(x)在[a,
2024-12-08 07:02
【摘要】第三章導數(shù)應用§1函數(shù)的單調(diào)性與極值1.1導數(shù)與函數(shù)的單調(diào)性一、基礎過關1.命題甲:對任意x∈(a,b),有f′(x)0;命題乙:f(x)在(a,b)內(nèi)是單調(diào)遞增的.則甲是乙的()A.充分不必要條件B.必要不充分條件C.充要
【摘要】函數(shù)的極值一、基礎過關1.函數(shù)y=f(x)的定義域為(a,b),y=f′(x)的圖像如圖,則函數(shù)y=f(x)在開區(qū)間(a,b)內(nèi)取得極小值的點有()A.1個B.2個C.3個D.4個2.下列關于函數(shù)的極值的說法正確的是
2024-12-08 05:55
【摘要】第2課時復數(shù)代數(shù)形式的加減運算及其幾何意義..實數(shù)可以進行加減運算,并且具有豐富的運算律,其運算結(jié)果仍是實數(shù);多項式也有相應的加減運算和運算律;對于引入的復數(shù),其代數(shù)形式類似于一個多項式,當然它也應有加減運算,并且也有相應的運算律.問題1:依據(jù)多項式的加法法則,得到復數(shù)加法的運算法
2024-11-19 23:14
【摘要】章末質(zhì)量評估(三)(時間:100分鐘滿分:120分)一、選擇題(本題共10小題,每小題5分,共50分)1.已知函數(shù)f(x)=-x3+3x2+9x+a(a為常數(shù)),在區(qū)間[-2,1]上有最大值20,則此函數(shù)在[-2,1]上的最小值為().A.-37B.-7C.-5D
2024-12-04 20:36
【摘要】?§復數(shù)的四則運算(一)一.教學目標1.理解復數(shù)代數(shù)形式的四則運算法則;2.能運用運算律進行復數(shù)的四則運算。二.重點、難點重點:了解復數(shù)的四則運算是一種新的規(guī)定,不是多項式運算法則合情推理的結(jié)果;掌握復數(shù)代數(shù)形式的四則運算法則;難點:理解復數(shù)代數(shù)形式的四則運算法則;會應用法則解方程、因式分解等
2024-11-19 21:26
【摘要】【成才之路】2021-2021學年高中數(shù)學第3章2第1課時實際問題中導數(shù)的意義課時作業(yè)北師大版選修2-2一、選擇題1.某人拉動一個物體前進,他所做的功W是時間t的函數(shù)W=W(t),則W′(t0)表示()A.t=t0時做的功B.t=t0時的速度C.t=t0時的位移D.t=t0時
2024-12-05 06:27
【摘要】章末質(zhì)量評估(一)(時間:100分鐘滿分:120分)一、選擇題(本題共10小題,每小題5分,共50分)1.分析法是從要證明的結(jié)論出發(fā),逐步尋求使結(jié)論成立的().A.充分條件B.必要條件C.充要條件D.等價條件答案A2.在下列各函數(shù)中,最小值等于2的函數(shù)是().A
2024-12-04 23:43
【摘要】章末質(zhì)量評估(四)(時間:100分鐘滿分:120分)一、選擇題(本題共10小題,每小題5分,共50分)1.??01(ex+2x)dx等于().A.1B.e-1C.eD.e+1解析??01(ex+2x)dx=(ex+x2)|
【摘要】【成才之路】2021-2021學年高中數(shù)學第3章1第1課時導數(shù)與函數(shù)的單調(diào)性課時作業(yè)北師大版選修2-2一、選擇題1.函數(shù)y=xlnx+m的單調(diào)遞增區(qū)間是()A.(1e,+∞)B.(0,e)C.(0,1e)D.(1e,e)[答案]A[解析]定義域為{x|x0}
【摘要】?§復數(shù)的四則運算(二)一.教學目標(iiiii2321,2321,1,1,??????),再次鞏固復數(shù)的四則運算法則;,再次體會復數(shù)的四則運算是一種新的規(guī)定..,不是多項式運算法則合情推理的結(jié)果。二.重點、難點掌握幾個特殊的復數(shù);加強對新事物的科學認識(可以用類比來記憶新事物,但使用之前應推理、證
【摘要】【成才之路】2021-2021學年高中數(shù)學第3章第2課時復數(shù)的乘法與除法課時作業(yè)新人教B版選修2-2一、選擇題1.(2021·新課標Ⅱ理,2)若a為實數(shù),且(2+ai)(a-2i)=-4i,則a=()A.-1B.0C.1D.2[答案]B
2024-12-03 11:27
【摘要】復數(shù)的四則運算⑵一、復習鞏固::(1)運算法則:設復數(shù)z1=a+bi,z2=c+di,那么:z1+z2=(a+c)+(b+d)i;z1-z2=(a-c)+(b-d)i.(2)復數(shù)的加法滿足交換律、結(jié)合律,即對任何z1,z2,z3∈C,有:z1+z2=z2+z1,(z1+z2)+z3=z1+(z
2024-11-19 13:09
【摘要】1.2函數(shù)的極值【學習要求】1.了解函數(shù)極值的概念,會從幾何直觀理解函數(shù)的極值與導數(shù)的關系,并會靈活應用.2.掌握函數(shù)極值的判定及求法.3.掌握函數(shù)在某一點取得極值的條件.【學法指導】函數(shù)的極值反映的是函數(shù)在某點附近的性質(zhì),是局部性質(zhì).函數(shù)極值可以在函數(shù)圖像上“眼見為實”,通過研究極值初步體會函數(shù)的導數(shù)的作用
2024-11-17 19:02