【摘要】公理1如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在此平面內(nèi)。αABl),,,????????????llBAlBlA(或公理2過(guò)不在一條直線上的三點(diǎn),有且只有一個(gè)平面????????CBACBA,,,,使,有且只有一個(gè)平面三點(diǎn)不共線αABC公理3如果兩個(gè)
2025-08-05 10:54
【摘要】文科立體幾何證明線面、面面平行,四棱錐P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點(diǎn),AM=2MD,N為PC的中點(diǎn).①證明MN∥平面PAB;②求四面體N-BCM的體積.2.如圖,四棱錐P-ABCD中,AD∥BC,AB=BC=AD,E,F(xiàn),H分別為線段AD,PC
2025-03-25 03:14
【摘要】第一篇:立體幾何規(guī)范性證明 立體幾何證明規(guī)范性訓(xùn)練(1) 1、如圖,M,N,K分別是正方體ABCD-A1B1C1D1的棱AB,CD,C1D1的中點(diǎn).(1)求證:AN//平面A1MK;(2)求證:M...
2024-10-14 09:02
【摘要】第一篇:立體幾何的證明方法1] 立體幾何的證明方法總結(jié) 文字語(yǔ)言表述部分: 一、線線平行的證明方法 1、利用平行四邊形; 2、利用三角形或梯形的中位線; 3、如果一條直線和一個(gè)平面平行,經(jīng)...
2024-11-15 05:28
【摘要】第一篇:高中立體幾何證明方法 高中立體幾何 一、平行與垂直關(guān)系的論證 由判定定理和性質(zhì)定理構(gòu)成一套完整的定理體系,在應(yīng)用中:低一級(jí)位置關(guān)系判定高一級(jí)位置關(guān)系;高一級(jí)位置關(guān)系推出低一級(jí)位置關(guān)系,前...
2024-10-28 20:01
【摘要】立體幾何平行證明題二、平面與平面平行:)//,:(//::1??????????則若用符號(hào)表示為記為平行與平面則稱平面沒(méi)有公共點(diǎn)與平面平面定義???,、2、判定方法??????????////////:??????????或其它方法aa②baba,、///
2025-08-05 09:40
【摘要】高中立體幾何典型習(xí)題及解析(二)26.在空間四邊形ABCD中,E,H分別是AB,AD的中點(diǎn),F(xiàn),G分別是CB,CD的中點(diǎn),若AC+BD=a,ACBD=b,求.解析:四邊形EFGH是平行四邊形,…………(4分)=2=27.如圖,在三角形⊿ABC中,∠ACB=90o,AC=b,BC=a,P是⊿ABC所在平面外一點(diǎn),PB⊥AB,M是PA的中點(diǎn),A
2025-01-14 12:46
【摘要】第一篇:立體幾何常見(jiàn)證明方法 立體幾何方法歸納小結(jié) 一、線線平行的證明方法 1、根據(jù)公理4,證明兩直線都與第三條直線平行。 2、根據(jù)線面平行的性質(zhì)定理,若直線a平行于平面A,過(guò)a的平面B與平面...
2024-11-15 05:33
【摘要】高一立體幾何平行、垂直解答題精選1.已知直三棱柱ABC-A1B1C1,點(diǎn)N在AC上且CN=3AN,點(diǎn)M,P,Q分別是AA1,A1B1,:直線PQ∥平面BMN.2.如圖,在正方形ABCD-A1B1C1D1中,E,F(xiàn),M分別是棱B1C1,BB1,C1D1的中點(diǎn),是否存在過(guò)點(diǎn)E,M且與平面A1FC平行的平面?若存在,請(qǐng)作出并證明;若不存在,請(qǐng)說(shuō)明理由
2025-03-26 05:39
【摘要】一、選擇題 1、如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為,粗線畫出的是某 1幾何體的三視圖,則此幾何體的體積為(B) ()A6()B9()C??()D? 2、平面α截球O的球面所得圓的半徑為1, 球心O到平面α的距離為,則此球的體積為(B) 2(A)π(B)4π(C)4π
2025-08-08 23:03
【摘要】高考鏈接三視圖專題訓(xùn)練[2011·安徽卷]一個(gè)空間幾何體的三視圖如圖1-1所示,則該幾何體的表面積為( )圖1-1A.48B.32+8C.48+8D.80[2011·安徽卷]C 【解析】由三視圖可知本題所給的是一個(gè)底面為等腰梯形的放倒的直四棱柱(如圖所示),所以該直四棱柱的表面積為S=2××(
2025-03-25 06:43
【摘要】單元測(cè)試九立體幾何同P279-282將原來(lái)第2、6、7、11、14、16、18、20題替換為如下各題:2、()下列命題中錯(cuò)誤的是(D)(A)如果平面??平面β,那么平面?內(nèi)一定存在直線平行于平面β(B)如果平面?不垂直于平面β,那么平面?內(nèi)一定不存在直線垂直于平面β(
2024-11-19 00:42
【摘要】高考立體幾何大題及答案1.(2009全國(guó)卷Ⅰ文)如圖,四棱錐中,底面為矩形,底面,,,點(diǎn)在側(cè)棱上,。(I)證明:是側(cè)棱的中點(diǎn);求二面角的大小。2.(2009全國(guó)卷Ⅱ文)如圖,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分別為AA1、B1C的中點(diǎn),DE⊥平面BCC1(Ⅰ)證明:AB=AC(Ⅱ)設(shè)二面
2025-06-26 05:02
【摘要】第一篇:立體幾何題證明方法 立體幾何題型與方法 1.平面的基本性質(zhì):掌握三個(gè)公理及推論,會(huì)說(shuō)明共點(diǎn)、共線、共面問(wèn)題。 (1)證明點(diǎn)共線的問(wèn)題,一般轉(zhuǎn)化為證明這些點(diǎn)是某兩個(gè)平面的公共點(diǎn)(依據(jù):由點(diǎn)...
【摘要】,四棱錐中,底面為矩形,底面,,,點(diǎn)在側(cè)棱上,。(I)證明:是側(cè)棱的中點(diǎn);求二面角的大小。,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分別為AA1、B1C的中點(diǎn),DE⊥平面BCC1(Ⅰ)證明:AB=AC(Ⅱ)設(shè)二面角A-BACBA1B1C1DED-C為60
2025-06-26 04:57