【摘要】高中立體幾何典型習(xí)題及解析(二)26.在空間四邊形ABCD中,E,H分別是AB,AD的中點(diǎn),F(xiàn),G分別是CB,CD的中點(diǎn),若AC+BD=a,ACBD=b,求.解析:四邊形EFGH是平行四邊形,…………(4分)=2=27.如圖,在三角形⊿ABC中,∠ACB=90o,AC=b,BC=a,P是⊿ABC所在平面外一點(diǎn),PB⊥AB,M是PA的中點(diǎn),A
2025-01-14 12:46
【摘要】第一篇:立體幾何常見證明方法 立體幾何方法歸納小結(jié) 一、線線平行的證明方法 1、根據(jù)公理4,證明兩直線都與第三條直線平行。 2、根據(jù)線面平行的性質(zhì)定理,若直線a平行于平面A,過a的平面B與平面...
2024-11-15 05:33
【摘要】高一立體幾何平行、垂直解答題精選1.已知直三棱柱ABC-A1B1C1,點(diǎn)N在AC上且CN=3AN,點(diǎn)M,P,Q分別是AA1,A1B1,:直線PQ∥平面BMN.2.如圖,在正方形ABCD-A1B1C1D1中,E,F(xiàn),M分別是棱B1C1,BB1,C1D1的中點(diǎn),是否存在過點(diǎn)E,M且與平面A1FC平行的平面?若存在,請(qǐng)作出并證明;若不存在,請(qǐng)說明理由
2025-03-26 05:39
【摘要】一、選擇題 1、如圖,網(wǎng)格紙上小正方形的邊長為,粗線畫出的是某 1幾何體的三視圖,則此幾何體的體積為(B) ()A6()B9()C??()D? 2、平面α截球O的球面所得圓的半徑為1, 球心O到平面α的距離為,則此球的體積為(B) 2(A)π(B)4π(C)4π
2025-08-08 23:03
【摘要】高考鏈接三視圖專題訓(xùn)練[2011·安徽卷]一個(gè)空間幾何體的三視圖如圖1-1所示,則該幾何體的表面積為( )圖1-1A.48B.32+8C.48+8D.80[2011·安徽卷]C 【解析】由三視圖可知本題所給的是一個(gè)底面為等腰梯形的放倒的直四棱柱(如圖所示),所以該直四棱柱的表面積為S=2××(
2025-03-25 06:43
【摘要】單元測試九立體幾何同P279-282將原來第2、6、7、11、14、16、18、20題替換為如下各題:2、()下列命題中錯(cuò)誤的是(D)(A)如果平面??平面β,那么平面?內(nèi)一定存在直線平行于平面β(B)如果平面?不垂直于平面β,那么平面?內(nèi)一定不存在直線垂直于平面β(
2024-11-19 00:42
【摘要】高考立體幾何大題及答案1.(2009全國卷Ⅰ文)如圖,四棱錐中,底面為矩形,底面,,,點(diǎn)在側(cè)棱上,。(I)證明:是側(cè)棱的中點(diǎn);求二面角的大小。2.(2009全國卷Ⅱ文)如圖,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分別為AA1、B1C的中點(diǎn),DE⊥平面BCC1(Ⅰ)證明:AB=AC(Ⅱ)設(shè)二面
2025-06-26 05:02
【摘要】第一篇:立體幾何題證明方法 立體幾何題型與方法 1.平面的基本性質(zhì):掌握三個(gè)公理及推論,會(huì)說明共點(diǎn)、共線、共面問題。 (1)證明點(diǎn)共線的問題,一般轉(zhuǎn)化為證明這些點(diǎn)是某兩個(gè)平面的公共點(diǎn)(依據(jù):由點(diǎn)...
2024-11-15 05:28
【摘要】,四棱錐中,底面為矩形,底面,,,點(diǎn)在側(cè)棱上,。(I)證明:是側(cè)棱的中點(diǎn);求二面角的大小。,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分別為AA1、B1C的中點(diǎn),DE⊥平面BCC1(Ⅰ)證明:AB=AC(Ⅱ)設(shè)二面角A-BACBA1B1C1DED-C為60
2025-06-26 04:57
【摘要】立體幾何——平行的證明【例1】如圖,四棱錐P-ABCD的底面是平行四邊形,點(diǎn)E、F分別為棱AB、PD的中點(diǎn).求證:AF∥平面PCE;(第1題圖)分析:取PC的中點(diǎn)G,連EG.,F(xiàn)G,則易證AEGF是平行四邊形【例2】如圖,已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+,過A作AE⊥CD,垂足為E,G
2025-03-26 05:42
【摘要】初中幾何證明題經(jīng)典題(一)1、已知:如圖,O是半圓的圓心,C、E是圓上的兩點(diǎn),CD⊥AB,EF⊥AB,EG⊥CO.求證:CD=GF.(初二)2、已知:如圖,P是正方形ABCD內(nèi)部的一點(diǎn),∠PAD=∠PDA=15°。求證:△PBC是正三角形.(初二)
2025-06-18 07:36
【摘要】初三幾何證明題經(jīng)典題(一)1、已知:如圖,O是半圓的圓心,C、E是圓上的兩點(diǎn),CD⊥AB,EF⊥AB,EG⊥CO.求證:CD=GF.2、已知:如圖,P是正方形ABCD內(nèi)部的一點(diǎn),∠PAD=∠PDA=15°。求證:△PBC是正三角形.(初二)
2025-06-25 16:31
【摘要】第一篇:立體幾何證明大題2 立體幾何證明大題 1.如圖,四面體ABCD中,AD^平面BCD,E、F分別為AD、AC的中點(diǎn),BC^CD.求證:(1)EF//平面BCD(2)BC^平面ACD. 2、...
2024-11-12 12:45
【摘要】1、垂直于同一條直線的兩條直線一定A、平行B、相交C、異面D、以上都有可能2、a,b,c表示直線,M表示平面,給出下列四個(gè)命題:①若a∥M,b∥M,則a∥b;②若bM,a∥b,則a∥M;③若a⊥c,b⊥c,則a∥b;④若a⊥M,b⊥M,則a∥ A、0個(gè) B、1個(gè)
2025-03-25 02:03
【摘要】立體幾何知識(shí)點(diǎn)一、空間幾何體:由若干個(gè)多邊形圍成的幾何體,叫做多面體。圍成多面體的各個(gè)多邊形叫做多面體的面,相鄰兩個(gè)面的公共邊叫做多面體的棱,棱與棱的公共點(diǎn)叫做多面體的頂點(diǎn).:有兩個(gè)面互相平行,其余各面都是四邊形,并且每相鄰兩個(gè)四邊形的公共邊都平行,由這些面所圍成的多面體叫做棱柱。兩個(gè)互相平行的面叫做底面,其余各面叫做側(cè)面.:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形
2025-06-19 17:02