【摘要】第一篇:高中數(shù)學立體幾何證明公式 線線平行→線面平行如果平面外一條直線和這個平面內(nèi)的一條直線平行,那么這條直線和這個平面平行。 線面平行→線線平行如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這...
2024-10-27 00:25
【摘要】第一篇:立體幾何證明中常用知識點 立體幾何證明中常用知識點 一、判定兩線平行的方法 1、平行四邊形 2、中位線定理 3、如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條...
2024-11-12 12:29
【摘要】10《高中復習資料》數(shù)學1.甲烷分子由一個碳原子和四個氫原子組成,其空間構型為一正四面體,碳原子位于該正四面體的中心,個點(體積忽略不計),且已知碳原子與每個氫原子間的距離都為,則以四個氫原子為頂點的這個正四面體的體積為()A,B,C,D,2.夾在兩個平行平面之間的球,圓柱,圓錐在這兩個平面上的射影
2025-04-17 13:10
【摘要】立體幾何高考真題大題1.(2016高考新課標1卷)如圖,在以A,B,C,D,E,F為頂點的五面體中,面ABEF為正方形,AF=2FD,,且二面角D-AF-E與二面角C-BE-F都是.(Ⅰ)證明:平面ABEF平面EFDC;(Ⅱ)求二面角E-BC-A的余弦值.【答案】(Ⅰ)見解析;(Ⅱ)【解析】試題分析:(Ⅰ)先證明平面,結合平面,可得平面平面.(Ⅱ
2025-04-17 07:37
【摘要】立體幾何常考證明題匯總考點1:證平行(利用三角形中位線),異面直線所成的角已知四邊形是空間四邊形,分別是邊的中點(1)求證:EFGH是平行四邊形AHGFEDCB(2)若BD=,AC=2,EG=2。求異面直線AC、BD所成的角和EG、BD所成的角??键c2:線面垂直,面面垂直的判定如圖,已知空間四邊形中,,是的中點。
2025-04-04 05:14
【摘要】上海立體幾何高考試題匯總(01春)若有平面與,且,則下列命題中的假命題為()(A)過點且垂直于的直線平行于.(B)過點且垂直于的平面垂直于.(C)過點且垂直于的直線在內(nèi).(D)過點且垂直于的直線在內(nèi).(01)已知a、b為兩條不同的直線,α、β為兩個不同的平面,且a⊥α,b⊥β,則下列命題中的假命題是(?
【摘要】立體幾何——平行的證明【例1】如圖,四棱錐P-ABCD的底面是平行四邊形,點E、F分別為棱AB、PD的中點.求證:AF∥平面PCE;(第1題圖)分析:取PC的中點G,連EG.,F(xiàn)G,則易證AEGF是平行四邊形【例2】如圖,已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+,過A作AE⊥CD,垂足為E,G
2025-03-26 05:42
【摘要】高一立體幾何證明專題練習一,在三棱柱ABC-A1B1C1中,E,F(xiàn),G,H分別是AB,AC,A1B1,A1C1的中點,求證:(1)B,C,H,G四點共面;(2)平面EFA1∥平面BCHG.,在直三棱柱ABC-A1B1C1中,AB=AC=5,BB1=BC=6,D,E分別是AA1和B1C的中點.(1)求證:DE∥平面ABC;(
2025-03-26 05:39
【摘要】一輪復習之立體幾何姓名一輪復習之立體幾何姓名1.已知三棱錐中,為等腰直角三角形,,設點為中點,點為中點,點為上一點,且.(1)證明:平面;(2)若,求直線與平面所成角的正弦值.
2025-07-24 12:16
【摘要】1基礎題題庫三立體幾何201..已知過球面上A、B、C三點的截面和球心的距離等于球半徑的一半,且AB=BC=AC=2,求球的體積。解析:過A、B、C三點截面的小圓的半徑就是正△ABC的外接圓的半徑332,它是Rt△中060所對的邊,其斜邊為34,即球的半徑為34,∴?81256?V;202.正
2025-08-20 20:22
【摘要】嵌入法巧解立體幾何題江蘇省南通中學趙棟正方體、長方體、正棱錐等幾何體的線線、線面、面面關系明朗,元素間的內(nèi)在聯(lián)系清晰。若能抓住試題提供信息的特殊性,巧妙地把題目中的幾何圖形嵌入到這些幾何體內(nèi),將會給論證和計算帶來方便,使問題獲得更為簡捷的解法。例1、已知ABCD是正方形,PA平面ABCD,PA=AB,求:平面PAB和平面PCD所成角的大小。圖1
2024-10-04 15:17
【摘要】(2012江西?。ū拘☆}滿分12分)如圖,在梯形ABCD中,AB∥CD,E,F(xiàn)是線段AB上的兩點,且DE⊥AB,CF⊥AB,AB=12,AD=5,BC=4,DE=△ADE,△CFB分別沿DE,CF折起,使A,B兩點重合與點G,得到多面體CDEFG.(1)求證:平面DEG⊥平面CFG;(2)求多面體CDEFG的體積。2012,山東(19)(本小題滿分12分)如圖,
2025-04-17 13:07
【摘要】立體幾何大題1.如下圖,一個等腰直角三角形的硬紙片ABC中,∠ACB=90°,AC=4cm,CD是斜邊上的高沿CD把△ABC折成直二面角.ABC第1題圖ABCD第1題圖(1)如果你手中只有一把能度量長度的直尺,應該如何確定A,B的位置,使二面角A-CD-B是直二面角?證明你的結論.(2)試在平面AB
2025-04-17 13:17
【摘要】第一篇:高中立體幾何證明平行的專題訓練) 高中立體幾何證明平行的專題訓練 深圳市龍崗區(qū)東升學?!_虎勝 立體幾何中證明線面平行或面面平行都可轉化為線線平行,而證明線線平行一般有以下的一些方法:...
2024-11-16 23:32
【摘要】立體幾何知識概要及主要解題方法、典型例題一、內(nèi)容提要:立體幾何需要我們?nèi)ソ鉀Q的問題概括起來就是三個方面,證明位置關系、求距離和求角;具體內(nèi)容見下表:立體幾何提要主要內(nèi)容重點內(nèi)容位置關系兩條異面直線相互垂直、直線與平面平行、直線與平面斜交、直線與平面垂直、兩個平面斜交、兩個平面相互垂直兩條異面直線相互垂直、直線與平面平行、直
2024-10-04 16:40