【摘要】110-3可降階的高階微分方程2復(fù)習(xí)1.可分離變量方程分離變量法步驟:;-隱式通解.d()dyyxx??形如的微分方程.解法:,xyu?作變量代換,yxu?即dd.yuuxxx??則3.一階線性非齊次微分方程(1)一般式(2)通解公式
2025-05-12 17:48
【摘要】第5章微分方程一、內(nèi)容精要(一)主要定義微分方程中出現(xiàn)的未知函數(shù)導(dǎo)數(shù)的最高階數(shù)叫做微分方程的階,本光盤只限討論常微分方程.含有自變量、未知函數(shù)以及未知函數(shù)的導(dǎo)數(shù)或微分的方程叫做微分方程;未知
2025-01-19 14:35
【摘要】微分方程模型馬忠明動(dòng)態(tài)模型?描述對(duì)象特征隨時(shí)間(空間)的演變過程?分析對(duì)象特征的變化規(guī)律?預(yù)報(bào)對(duì)象特征的未來(lái)性態(tài)?研究控制對(duì)象特征的手段?根據(jù)函數(shù)及其變化率之間的關(guān)系確定函數(shù)微分方程建模?根據(jù)建模目的和問題分析作出簡(jiǎn)化假設(shè)?按照內(nèi)在規(guī)律或用類比
2025-01-17 14:49
【摘要】無(wú)窮級(jí)數(shù)數(shù)項(xiàng)級(jí)數(shù)冪級(jí)數(shù)討論斂散性求收斂范圍,將函數(shù)展開為冪級(jí)數(shù),求和。傅立葉級(jí)數(shù)求函數(shù)的傅立葉級(jí)數(shù)展開,討論和函數(shù)的性質(zhì)。給定一個(gè)數(shù)列??,,,,,321nuuuu將各項(xiàng)依,1???nnu即稱上式為無(wú)窮級(jí)數(shù),其中第n項(xiàng)nu叫做級(jí)數(shù)的一般項(xiàng)
2024-10-05 00:06
【摘要】微分方程的近似解法差分解法對(duì)三類典型偏微分方程的定解問題,差分解法的基本思想是用函數(shù)的差商代替微商,從而把微分運(yùn)算化成代數(shù)運(yùn)算,求解出在定解區(qū)域中足夠多的點(diǎn)上的近似值。1、差分與差分方程n函數(shù)f(x)的導(dǎo)數(shù)是函數(shù)的增量與自變量增量的比值當(dāng)自變量增量趨于零的極限。n即:一階差商高階差商由差商代替微商的誤差偏導(dǎo)數(shù)的差商表示差分方程
2025-08-05 07:11
【摘要】第四次:常微分方程數(shù)值解一:引言:1:微分方程在數(shù)模中有重要作用。2:列出微分方程僅是第一步,求解微方程為第二步。3:但僅有少數(shù)微分方程可解析解,大部分非線性方程,變系數(shù)方程,均所謂“解不出來(lái)”)1()()(()()]()[()(:1____])
2025-08-20 11:53
【摘要】微分方程模型新鄉(xiāng)學(xué)院數(shù)學(xué)系§微分方程的幾個(gè)簡(jiǎn)單實(shí)例在許多實(shí)際問題中,當(dāng)直接導(dǎo)出變量之間的函數(shù)關(guān)系較為困難,但導(dǎo)出包含未知函數(shù)的導(dǎo)數(shù)或微分的關(guān)系式較為容易時(shí),可用建立微分方程模型的方法來(lái)研究該問題,本節(jié)將通過一些最簡(jiǎn)單的實(shí)例來(lái)說明微分方程建模的一般方法。在連續(xù)變量問題的研究中,微分方程是十分常用的數(shù)學(xué)工具之一
2025-01-03 23:53
【摘要】???
2025-06-21 23:02
【摘要】第九章常微分方程的數(shù)值解法§1、引言§2、初值問題的數(shù)值解法單步法§3、龍格-庫(kù)塔方法§4、收斂性與穩(wěn)定性§5、初值問題的數(shù)值解法―多步法§6、方程組和剛性方程§7、習(xí)題和總結(jié)主要內(nèi)容主
2025-08-04 15:59
【摘要】第八講線性微分方程(2)高等教育電子音像出版社寧波大學(xué)陶祥興等編本節(jié)內(nèi)容提要一、準(zhǔn)備工作.二、指數(shù)矩陣的定義和性質(zhì).三、基解矩陣的計(jì)算公式.四、拉氏變換及應(yīng)用.一、準(zhǔn)備工作.(1)xAx??A在前面一講中,除了基解矩陣,我們已經(jīng)得到了線性微分
2024-12-08 05:36
【摘要】用分離變量法解常微分方程.1直接可分離變量的微分方程=()的方程,稱為變量分離方程,這里,分別是的連續(xù)函數(shù).如果(y)≠0,我們可將()改寫成=,這樣,變量就“分離”,得到 通解:=+c. ()其中,c表示該常數(shù),,分別理解為,()()的解.例1求解方程的通解.解:(1)變形且分離變量:(2)兩邊積分:,得.
2025-07-25 08:19
【摘要】本章重點(diǎn)講述:A線性微分方程的基本理論;B常系數(shù)線性方程的解法;C某些高階方程的降階和二階方程的冪級(jí)數(shù)解法。對(duì)于二階及二階以上的微分方程的解包括基本理論和求解方法。這部分內(nèi)容有兩部分:1、線性微分方程(組):在第四、五章討論
2024-10-19 17:11
【摘要】常微分方程的基本概念可分離變量的微分方程一階微分方程與可降階的高階微分方程二階常系數(shù)微分方程常微分方程的應(yīng)用舉例第9章常微分方程結(jié)束前頁(yè)結(jié)束后頁(yè)含有未知函數(shù)的導(dǎo)數(shù)(或微分)的方程稱為微分方程。定義一常微分方程的基
2025-01-19 07:39
【摘要】微分方程模型二、微分方程模型三、微分方程案例分析一、微分方程建模簡(jiǎn)介四、微分方程的MATLAB求解五、微分方程綜合案例分析微分方程是研究變化規(guī)律的有力工具,在科技、工程、經(jīng)濟(jì)管理、生態(tài)、環(huán)境、人口和交通各個(gè)領(lǐng)域中有廣泛的應(yīng)用。不少實(shí)際問題當(dāng)我們采用微觀眼光觀察時(shí)都遵循著下面的模式:凈變化率=輸入率-輸出率(守恒原理)
2025-01-19 10:50
【摘要】數(shù)學(xué)建模微分方程在研究實(shí)際問題時(shí),常常會(huì)聯(lián)系到某些變量的變化率或?qū)?shù),這樣所得到變量之間的關(guān)系式就是微分方程模型。微分方程模型反映的是變量之間的間接關(guān)系,因此,要得到直接關(guān)系,就得求微分方程。求解微分方程有三種方法:1)求精確解;2)求數(shù)值解(近似解);3)定性理論方法。一、導(dǎo)彈追蹤問題
2025-05-05 18:14