【摘要】第八節(jié)高階線性微分方程一、概念的引入例:設有一彈簧下掛一重物,如果使物體具有一個初始速度00?v,物體便離開平衡位置,并在平衡位置附近作上下振動.試確定物體的振動規(guī)律)(txx?.解受力分析;.1cxf??恢復力;.2dtdxR???阻力xxo,maF??,22dtdxcx
2025-10-08 00:48
【摘要】第二章控制系統(tǒng)的數(shù)學模型?掌握不同物理系統(tǒng)微分方程的建立?掌握拉氏變換及其性質?熟悉基本環(huán)節(jié)的傳遞函數(shù)?能用拉氏變換、框圖化簡及梅森增益公示求系統(tǒng)的傳遞函數(shù)教學目的?建立系統(tǒng)的微分方程?拉氏變換的應用及框圖化簡學習重點和難點本次課程作業(yè)2-172-13(c)把求傳遞函數(shù)改為求微分方程
2025-05-12 11:22
【摘要】1.=2xy,并滿足初始條件:x=0,y=1的特解。解:=2xdx兩邊積分有:ln|y|=x+cy=e+e=cex另外y=0也是原方程的解,c=0時,y=0原方程的通解為y=cex,x=0y=1時c=1特解為y=e.2.ydx+(x+1)dy=0并求滿足初始條件:x=0,y=1的特解。解:ydx=-(x+1)dydy=-dx兩邊積分
2025-06-26 20:41
【摘要】微分方程邊值問題的數(shù)值方法本部分內容只介紹二階常微分方程兩點邊值問題的的打靶法和差分法。二階常微分方程為 當關于為線性時,即,此時變成線性微分方程 對于方程或,其邊界條件有以下3類:第一類邊界條件為 當或者時稱為齊次的,否則稱為非齊次的。第二類邊界條件為 當或者時稱為齊次的,否則稱為非齊次的。第三類邊界條件為 其中,當或者稱為
2025-06-07 19:14
【摘要】微分方程數(shù)值解課程設計姓名*****學號200******專業(yè)信息與計算科學課設題目:對初邊值問題2222xutu?????(0x1)0||10??
2025-01-12 04:03
【摘要】項目四無窮級數(shù)與微分方程實驗1無窮級數(shù)(基礎實驗)實驗目的觀察無窮級數(shù)部分和的變化趨勢,進一步理解級數(shù)的審斂法以及冪級數(shù)部分和對函數(shù)的逼近.掌握用Mathematica求無窮級數(shù)的和,求冪級數(shù)的收斂域,展開函數(shù)為冪級數(shù)以及展開周期函數(shù)為傅里葉級數(shù)的方法.數(shù)項級數(shù)(教材)(1)觀察級數(shù)的部分和序列的變化趨勢
2025-06-30 10:26
2025-06-06 05:22
【摘要】河海大學理學院《高等數(shù)學》高等數(shù)學(下)河海大學理學院《高等數(shù)學》第七章常微分方程高等數(shù)學(上)河海大學理學院《高等數(shù)學》第四節(jié)高階線性微分方程河海大學理學院《高等數(shù)學》一、概念的引入例:設有一彈簧下掛一重物,如果使物體具有一個初始速度00?v,物體
2025-05-07 12:10
【摘要】§常系數(shù)線性微分方程的解法-對于一般的線性微分方程沒有普遍的解法基本點v常系數(shù)線性微分方程及可化為這一類型的方程的解法-只須解一個代數(shù)方程。v某些特殊的非齊次微分方程也可通過代數(shù)運算和微分運算求得它的通解。掌握:v特征方程與特征根,及求常系數(shù)線性方程的通解v待定系數(shù)法與拉普拉斯變換法求非齊次線性方程的特解
2025-04-29 01:03
【摘要】微積分理論微分方程及其應用微積分II微積分理論馮國臣2022/2/17例1一曲線通過點(1,2),且在該曲線上任一點),(yxM處的切線的斜率為x2,求這曲線的方程.解)(xyy?設所求曲線為xdxdy2???xdxy22,1??yx時其中,2Cxy??即,1?C求得
2025-01-20 05:31
【摘要】目錄上頁下頁返回結束微分方程課程的一個主要問題是求解,即把微分方程的解通過初等函數(shù)或它們的積分表達出來,但對一般的微分方程是無法求解的,如對一般的二元函數(shù)),(yxf,我們無法求出一階微分方程),(yxfy??(1)的解,但是對某些特殊類型的方程,我們可設法轉化為已解決的問題第二章
2024-12-08 09:04
【摘要】習題(一)、解下列方程,并求奇解(如果存在的話):。1、解:令,則,兩邊對x求導,得從得時,;從得, 為參數(shù),為任意常數(shù).經(jīng)檢驗得 ,是方程奇解.2、解:令,則,兩邊對x求導,得,解之得,所以,且y=x+1也是方程的解,但不是奇解.3、解:這是克萊洛方
2025-06-24 15:00
【摘要】變質量物體的運動微分方程及火箭運動專業(yè):物理學學號:084001091001姓名:秦瑞鋒變質量物體的運動微分方程及火箭運動秦瑞鋒(物理與電氣工程系09級物理學專業(yè),084001091001)摘要:我們已經(jīng)了解了一定質量的系統(tǒng)的運動學方程和動力學方程,但在實際問題中,系統(tǒng)的質量往往是變化(按一定規(guī)律減少
2025-05-27 23:51
【摘要】可分離變量的微分方程第二節(jié)一階微分方程的一般形式:(,)yfxy??(,)(,)0PxydxQxydy??(變量與對稱)xy若將看作未知函數(shù),則有x若將看作未知函數(shù),則有y(,)((,)0)(,)dyPxyQxydxQ
2025-07-18 15:26
【摘要】《偏微分方程》第3章波動方程《偏微分方程》第3章波動方程《偏微分方程》第3章波動方程分析可得上述初值問題的形式解是:稱此式為d’Alembert(達朗貝爾)公式11(,)[()()]()22xatxatuxtxatxatydya???
2025-02-21 16:13