freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高三文科數(shù)學(xué)一輪復(fù)習(xí)題庫-導(dǎo)數(shù)和三角函數(shù)-全文預(yù)覽

2024-11-30 19:39 上一頁面

下一頁面
  

【正文】 ,cosx+2cosα ),其中 0α xπ . (1)若α =錯誤 !未找到引用源。 absinC=錯誤 !未找到引用源。 , 得 b=錯誤 !未找到引用源。 sin45176。 +45176。 ,a=1,B=45176。 錯誤 !未找到引用源。 ,c=錯誤 !未找到引用源。 2b , 所以 A=30176。 , 因為 A+B+C=180176。④ B=45176。 ),且 m⊥ n. (1)求 A的大小 . (2)現(xiàn)給出下列四個條件 :① a=1。 時 ,y=g(x)與 y=1 無交點 . 當(dāng) m=錯誤 !未找到引用源。 ), 再向右平移 錯誤 !未找到引用源。 ≤ x≤ kπ +錯誤 !未找到引用源。 ). 由 m0知 ,函數(shù) f(x)的最小正周期 T=π . 又 2kπ +錯誤 !未找到引用源。 sin2x) =m[sin(x+錯誤 !未找到引用源。 b+錯誤 !未找到引用源。 = 錯誤 !未找到引用源。 . (2)因為 a∥ b, 所以 sin x錯誤 !未找到引用源。 ), ab=(sin xcos x,錯誤 !未找到引用源。 . 答案 :錯誤 !未找到引用源。 , 解得 c=1或 c=7(舍去 ). 故向量 錯誤 !未找到引用源。 =錯誤 !未找到引用源。 . 由 0Aπ ,得 sinA=錯誤 !未找到引用源。 ,得 [cos(AB)+1]cosBsin(AB)sinBcosB=錯誤 !未找到引用源。 在 錯誤 !未找到引用源。 △ ABC中 ,角 A,B,C的對邊分別為 a,b,c,且 2cos2錯誤 !未找到引用源。 錯誤 !未找到引用源。 =錯誤 !未找到引用源。 =錯誤 !未找到引用源。 . 故選 A. 二、填空題 6. 在△ ABC 中 , 內(nèi)角 A,B,C 所 對 邊 分 別 為 a,b,c, 已知m=(1,2),n=(ccosA,b),p=(c,bcosA),若 m∥ n,m⊥ p,則△ ABC 的形狀是 . 【 解題提示】 利用向量關(guān)系轉(zhuǎn)化為邊角關(guān)系后 ,再邊化角可解 . 4 【解析】 由 m∥ n可得 ,b=2ccosA. 由正弦定理可得 sinB=2sinCcosA, 即 sin(A+C)=2sinCcosA. 從而 sinAcosC+cosAsinC=2sinCcosA, 故 sinAcosCcosAsinC=0. 即 sin(AC)=0,又 π ACπ , 所以 AC=0,即 A=C. 由 m⊥ p可得 c2bcosA=0, 從而 sinC2sinBcosA=0, 故 sin(A+B)2sinBcosA=0. 即 sinAcosBcosAsinB=0, 即 sin(AB)=0,故 AB=0,A=B. 所以 A=B=C. 故三角形為等邊三角形 . 答案 :等邊三角形 7.(2020 a ,錯誤 !未找到引用源 。 ,錯誤 !未找到引用源。 =2 且 a+b=5,則 c 等于 ( ) !未找到引用源。鄭州模擬 )在△ ABC 中 ,角 A,B,C 的對邊分別為 a,b,c,cosC=錯誤 !未找到引用源。 ∈ 錯誤 !未找到引用源。 =錯誤 !未找到引用源。 ,b=(cosθ ,sinθ ),θ∈ (0,π ),則 |ab|的取值范圍 是 ( ) A.(0,1) B.(0,1] C.(0,錯誤 !未找到引用源。 (cosβ ,sinβ )=cos(α β ),這表明這兩個向量的夾角的余弦值為 cos(α β ). 同時 ,也不能得出 a與 b的平行和垂直關(guān)系 . 因為計算得到 (a+b) ,所以 B=錯誤 !未找到引用源。 1)=錯誤 !未找到引用源。 !未找到引用源。 cosθ .故 tanθ =錯誤 !未找到引用源。 !未找到引用源。 1 專項強化訓(xùn)練 三角函數(shù)與平面向量的綜合應(yīng)用 一、選擇題 1.(2020 !未找到引用源。 cosθ =0, 即 sinθ =錯誤 !未找到引用源。 1),且 m∥ n,則銳角 B的值為 ( ) !未找到引用源。 【解題提示】 根據(jù) m∥ n,轉(zhuǎn)化為 B的三角函數(shù)值后求解 . 【解析】 選 m∥ n, 所以 2sinB(2cos2錯誤 !未找到引用源。 . 又因為 B為銳角 ,所以 2B∈ (0,π ). 所以 2B=錯誤 !未找到引用源。 b=(cosα ,sinα ) ] 故選 D. a=錯誤 !未找到引用源。 , 所以 |ab|=錯誤 !未找到引用源。 , 因為θ∈ (0,π ),所以 錯誤 !未找到引用源。 ). 5.(2020 錯誤 !未找到引用源。 【 解題提示】 由已知 cosC=錯誤 !未找到引用源。 =2,利用數(shù)量積公式得到 ab=8,再利用余弦定理可得 ,c2=a2+b22abcosC可求 c. 【解析】 選 cosC=錯誤 !未找到引用源。 =2, 得 b cosC=2, 所以 ab=8, 利用余弦定理可得 ,c2=a2+b22abcosC=(a+b)22ab2abcosC=522 84=5. 所以 c=錯誤 !未找到引用源。 與 x軸正向的夾角
點擊復(fù)制文檔內(nèi)容
公司管理相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1