【摘要】等比、差數(shù)列前n項和的性質(zhì){an}為等比數(shù)列,Sn為其前n項和,則SK,S2K-SK,S3K-S2K,···仍構(gòu)成等比數(shù)列,且有(S2K-SK)2=SK·(S3K-S2K)例{an}中,S10=10,S20=30,求S30.例{an}中,S10=10,S20=30,求S30.{an}為等差
2025-04-30 18:12
【摘要】高考遞推數(shù)列題型分類歸納解析各種數(shù)列問題在很多情形下,就是對數(shù)列通項公式的求解。特別是在一些綜合性比較強的數(shù)列問題中,數(shù)列通項公式的求解問題往往是解決數(shù)列難題的瓶頸。我現(xiàn)在總結(jié)出幾種求解數(shù)列通項公式的方法,希望能對大家有幫助。類型1解法:把原遞推公式轉(zhuǎn)化為,利用累加法(逐差相加法)求解。例1.已知
2025-03-25 05:12
【摘要】數(shù)列的通項公式是數(shù)列的核心之一,它如同函數(shù)的解析式一樣,有解析式便可研究其性質(zhì)等,而有了數(shù)列的通項公式,便可以研究數(shù)列的性質(zhì)及前n項和等,所以求數(shù)列的通項公式是研究數(shù)列的重中之重,現(xiàn)將求數(shù)列的通項公式幾種常見類型及方法總結(jié)如下:求數(shù)列的通項公式幾種常見類型及方法德興一中汪利群一、已知數(shù)列類型,利用公式法求
2024-11-18 18:02
【摘要】1求數(shù)列通項公式的方法一、知識復(fù)習(xí)1、通項公式:2、等差數(shù)列的通項公式:推導(dǎo)方法:3、等比數(shù)列的通項公式:推導(dǎo)方法:二、求數(shù)列的通項公式方法總結(jié)(一)觀察歸納法:通過觀察尋求na與n的關(guān)系(1)5,55,555,5555,(2)149161,2,
2024-10-21 07:00
【摘要】轉(zhuǎn)化法巧用換元法引入其他方法競賽輔導(dǎo)-數(shù)列(二)由數(shù)列的遞推公式求通項公式遞推數(shù)列有關(guān)概念:①遞推公式:一個數(shù)列{}na中的第n項na與它前面若干項1na?,2na?,…,nka?(kn?)的關(guān)系式稱為遞推公式.②遞推數(shù)列:由遞推公式和
2025-08-05 19:41
【摘要】?要點·疑點·考點?課前熱身?能力·思維·方法?延伸·拓展?誤解分析第2課時等差、等比數(shù)列的通項及求和公式要點·疑點·考點(比)數(shù)列中,Sn,S2n-Sn,S3n-S2n,…,Skn-S
2025-08-16 01:47
【摘要】通項公式求解方法大全:我現(xiàn)在總結(jié)出幾種求解數(shù)列通項公式的方法,希望能對大家有幫助。一、觀察法已知數(shù)列前若干項,求該數(shù)列的通項時,一般對所給的項觀察分析,尋找規(guī)律,從而根據(jù)規(guī)律寫出此數(shù)列的一個通項。:__________(答:)例2、(1)觀察數(shù)列的結(jié)構(gòu)特征,每一項都是一個分式,分母是數(shù)列2,4,8,16,32,…,可用項數(shù)表示為分子是數(shù)列1,3,7,1
【摘要】第四節(jié)數(shù)列的通項基礎(chǔ)梳理:如果數(shù)列{an}的________________之間的關(guān)系可以用一個公式來表示,那么這個公式叫做這個數(shù)列的通項公式.第n項與它的序號n2.數(shù)列的遞推公式:如果已知數(shù)列{an}的首項(或者前幾項),且任意一項an與an-1(或其前面的項)之間的關(guān)系可以______________,那么
2024-11-09 08:08
【摘要】......數(shù)列等差數(shù)列等比數(shù)列定義數(shù)列{an}的后一項與前一項的差an-an-1為常數(shù)d數(shù)列{an}的后一項與前一項的比為常數(shù)q(q≠0)專有名詞d為公差q為公比通項公式an=a1+(n-1)d
2025-04-17 01:43
【摘要】數(shù)列通項的求法一、公式法二、迭加法若an+1=an+f(n),則:若an+1=f(n)an,則:三、疊乘法an=S1(n=1),Sn-Sn-1(n≥2).an=a1+?(ak-ak-1)=a1+?f(k-1)=a1+?f(k).n-1k=1
2024-11-11 08:49
【摘要】數(shù)列通項的求法高三備課組求數(shù)列的通項方法1、由等差,等比定義,寫出通項公式2、利用迭加an-an-1=f(n)、迭乘an/an-1=f(n)、迭代3、一階遞推,我們通常將其化為
2024-11-09 08:47
【摘要】高三第一輪復(fù)習(xí)《必修五第二章數(shù)列》?第一節(jié)數(shù)列的概念與簡單表示法在教學(xué)中要充分發(fā)揮學(xué)生的主體地位,盡量讓學(xué)生獨立完成包括例題在內(nèi)的題目,教師在于對方法和規(guī)律的總結(jié),在于引導(dǎo)。知識點考試大綱說明考情分析數(shù)列的概念和簡單表示種簡單的表示方法(列表、圖象、通項公式)
2025-08-07 10:50
【摘要】數(shù)列求通項及通項的求法●目標地位:數(shù)列的通項是數(shù)列的核心?!穹椒w類:a、運用求數(shù)列通項公式例1.已知數(shù)列的前項和為,,,求。b、⑴已知關(guān)系式,可利用迭加法或迭代法;例1.已知數(shù)列中,,求數(shù)列的通項公式;例2.數(shù)列中,,,求。c、已知關(guān)系式,可利用迭乘法.:,求求數(shù)列的通項公式;
2025-08-17 06:54
【摘要】等比數(shù)列的通項公式教學(xué)目標:1.掌握通項公式,并能應(yīng)用公式解決有關(guān)問題;2.理解等比數(shù)列的性質(zhì),并學(xué)會其簡單應(yīng)用;3.會求兩個正數(shù)的等比中項,能利用等比中項的概念解決有關(guān)問題,提高分析、計算能力;4.通過學(xué)習(xí)推導(dǎo)等比數(shù)列的通項公式,掌握“疊乘法”.教學(xué)重點:等比數(shù)列的通項公式.教學(xué)難點:
2024-12-05 10:13
【摘要】課題:等差數(shù)列的通項公式班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標】:1、會用“疊加法”求等差數(shù)列通項公式;2、會用等差數(shù)列通項公式解決一些簡單問題?!菊n前預(yù)習(xí)】??na,4,7,10,13,16,?,則100a=,猜想na=
2024-11-20 01:05