【摘要】用不動點(diǎn)法求遞推數(shù)列(a2+c2≠0)的通項(xiàng)儲炳南(安徽省岳西中學(xué)246600)1.通項(xiàng)的求法為了求出遞推數(shù)列的通項(xiàng),我們先給出如下兩個定義:定義1:若數(shù)列{}滿足,則稱為數(shù)列{}的特征函數(shù).定義2:方程=x稱為函數(shù)的不動點(diǎn)方程,其根稱為函數(shù)的不動點(diǎn).下面分兩種情況給出遞推數(shù)列通項(xiàng)的求解通法.(1)當(dāng)c=0,時,由,記,,則有(k≠0),∴數(shù)列
2025-06-23 14:23
【摘要】高三數(shù)學(xué)組學(xué)習(xí)目標(biāo)?在了解數(shù)列概念的基礎(chǔ)上,掌握幾種常見遞推數(shù)列通項(xiàng)公式的求解方法?理解求通項(xiàng)公式的原理?體會各種方法之間的異同,感受事物與事物之間的相互聯(lián)系2021是這樣考的?1.(2021年高考新課標(biāo)1(理))若數(shù)列{an}的前n項(xiàng)和為Sn=,則數(shù)列{an}的通項(xiàng)公
2025-05-15 02:40
【摘要】......求數(shù)列通項(xiàng)公式一、公式法 類型1解法:把原遞推公式轉(zhuǎn)化為,利用累加法(逐差相加法)求解。例1已知數(shù)列滿足,,求數(shù)列的通項(xiàng)公式。 解:兩邊除以,得,則,故數(shù)列是以為首項(xiàng),以為公差
2025-03-25 02:53
【摘要】數(shù)列通項(xiàng)公式的求法一、近6年全國卷(2009——2014)求數(shù)列通項(xiàng)公式的試題概覽年份試題特點(diǎn)或已知條件類型或方法2009卷1轉(zhuǎn)化,累加法2009卷2,與的關(guān)系,構(gòu)造等差數(shù)列2010卷1,轉(zhuǎn)化,構(gòu)造等比數(shù)列2010新課標(biāo)累加法2011新課標(biāo)是等比數(shù)列,定義法,2012全國卷,轉(zhuǎn)化,構(gòu)造等比數(shù)列2013
2025-06-26 05:32
【摘要】數(shù)列通項(xiàng)的求法數(shù)列是高中代數(shù)的重要內(nèi)容之一,也是初等數(shù)學(xué)與高等數(shù)學(xué)的銜接點(diǎn),因而在歷年的高考試題中占有較大的比重,在這類問題中,求數(shù)列的通項(xiàng)往往是解題的突破口、關(guān)鍵點(diǎn)。一、觀察法?觀察法就是觀察數(shù)列特征,橫向看各項(xiàng)之間的結(jié)構(gòu),縱向看各項(xiàng)與項(xiàng)數(shù)n的內(nèi)在聯(lián)系。?適用于一些較簡單、特殊的數(shù)列。例1寫出下列數(shù)列的一
2025-01-08 14:05
【摘要】課時序號:36重點(diǎn):1、理解數(shù)列通項(xiàng)公式的意義,掌握等差、等比數(shù)列的通項(xiàng)公式的求法;2、根據(jù)數(shù)列的遞推公式構(gòu)造等差、等比數(shù)列求數(shù)列的通項(xiàng)公式.3、掌握數(shù)列通項(xiàng)公式的常用方法:公式法、累加法、累乘法、輔助數(shù)列法等等難點(diǎn):1、根據(jù)數(shù)列的遞推公式構(gòu)造等差、等比數(shù)列求數(shù)列的通項(xiàng)公式.2、掌握數(shù)列通項(xiàng)公式的常用方法:公式法、累加法、累乘法、迭代
2025-04-30 18:12
【摘要】第四節(jié)數(shù)列的通項(xiàng)基礎(chǔ)梳理:如果數(shù)列{an}的________________之間的關(guān)系可以用一個公式來表示,那么這個公式叫做這個數(shù)列的通項(xiàng)公式.第n項(xiàng)與它的序號n2.數(shù)列的遞推公式:如果已知數(shù)列{an}的首項(xiàng)(或者前幾項(xiàng)),且任意一項(xiàng)an與an-1(或其前面的項(xiàng))之間的關(guān)系可以______________,那么
2024-11-09 08:08
【摘要】......環(huán)球雅思學(xué)科教師輔導(dǎo)學(xué)案輔導(dǎo)科目:數(shù)學(xué)年級:高一學(xué)科教師:課時數(shù):3授課類型等差數(shù)列與通項(xiàng)公式教學(xué)目的掌
2025-06-25 04:00
【摘要】:——直接利用等差或等比數(shù)列的定義求通項(xiàng)。特征:適應(yīng)于已知數(shù)列類型(等差或者等比).例1.等差數(shù)列是遞增數(shù)列,前n項(xiàng)和為,且成等比數(shù)列,.求數(shù)列的通項(xiàng)公式.變式練習(xí):,求的通項(xiàng)公式2.在等比數(shù)列中,,且為和的等差中項(xiàng),求數(shù)列的首項(xiàng)、公比及前項(xiàng)和.求數(shù)列的通項(xiàng)可用公式求解。特征:
2025-06-17 07:01
【摘要】數(shù)列通項(xiàng)公式①有的數(shù)列沒有通項(xiàng)公式②有的數(shù)列有多個通項(xiàng)公式一、觀察法(即猜想法,不完全歸納法)例:數(shù)列9,99,999,9999,…例:求數(shù)列3,5,9,17,33,…注意:用不完全歸納法,只從數(shù)列的有限項(xiàng)來歸納數(shù)列所有項(xiàng)的通項(xiàng)公式是不一定可靠的,如2,4,8,
2024-11-09 04:46
【摘要】高一數(shù)學(xué)備課組數(shù)列通項(xiàng)一、常用數(shù)列通項(xiàng)1,2,3,4,……1,1,3,5,7,9,……3,5,7,9,11,……2,4,6,8,10,……0,2,4,6,8,……2,4,8,16,32,……1,4,9,16,25,
2024-11-10 01:03
2024-11-12 18:12
【摘要】求數(shù)列通項(xiàng)貴港市高級中學(xué)數(shù)學(xué)組曾偉君na一.基礎(chǔ)知識梳理求數(shù)列通項(xiàng),大體可分為以下三個模塊:1.利用公式:,;求通項(xiàng).nana1(1)naa
2024-11-10 00:25
【摘要】2018屆高三第一輪復(fù)習(xí)【20】——數(shù)列求和與求通項(xiàng)一、知識梳理:1.幾種數(shù)列的思想方法:(1)數(shù)列通項(xiàng)公式的常見求法(2)數(shù)列前項(xiàng)和的常見求法2.方法歸納:(1)求通項(xiàng):1、迭代法:;2、構(gòu)造法:;3、取倒數(shù):;4、取對數(shù):;5、公式法:;6、特征根法:,;7、待定系數(shù)法:;(2)求和:1、錯位相減法:等比數(shù)列求和公式的由
2025-04-17 12:37
【摘要】等比數(shù)列的通項(xiàng)公式與求和典例分析【例1】在等比數(shù)列中,,,則它的公比_______,前項(xiàng)和_______.【例2】等差數(shù)列的前項(xiàng)和為,且,則.【例3】設(shè)等比數(shù)列的前項(xiàng)和為,若,則()A. B. C. D.【例4】設(shè)是公比為的等比數(shù)列,,令,若
2025-07-25 06:33