【摘要】1§導數(shù)在經(jīng)濟學中的應(yīng)用邊際和彈性是經(jīng)濟學中的兩個重要概念。用導數(shù)來研究經(jīng)濟變量的邊際與彈性的方法,稱之為邊際分析與彈性分析。一、邊際分析(離散的經(jīng)濟變量連續(xù)化)()fx?0x0()?fx1、定義8經(jīng)濟學中,把函數(shù)?(x)的導函數(shù)稱為?(x)
2025-09-30 14:57
【摘要】一、平面及其方程二、直線及其方程三、小結(jié)思考題第四節(jié)平面與直線一、平面(plane)及其方程(equation)xyzo0MM如果一非零向量垂直于一平面,這向量就叫做該平面的法線向量.法線向量的特征:垂直于平面內(nèi)的任一向量.已知},,,{CBAn??),,,(000
2025-08-21 12:41
【摘要】一、夾逼準則二、單調(diào)有界收斂準則四、小結(jié)思考題極限存在準則兩個重要極限第五節(jié)三、連續(xù)復利連續(xù)復利一、夾逼準則準則Ⅰ如果數(shù)列nnyx,及nz滿足下列條件:,lim,lim)2()3,2,1()1(azaynzxynnnnnnn?????
2025-08-21 12:38
【摘要】一、柱面與旋轉(zhuǎn)曲面二、二次曲面三、小結(jié)思考題第五節(jié)曲面及其方程本節(jié)只對一些常見的曲面,圍繞下面兩個基本問題進行討論:(Ⅱ)已知坐標間的關(guān)系式,研究曲面形狀.(討論柱面(cylinder)、旋轉(zhuǎn)曲面(rotatingsurface))(討論二次曲面(twicesurface))(Ⅰ)已知曲面作為點的軌
2025-08-11 11:12
【摘要】一、問題的提出二、Pn和Rn的確定四、簡單應(yīng)用五、小結(jié)思考題三、泰勒中值定理第五節(jié)泰勒(Taylor)公式一、問題的提出1.設(shè))(xf在0x處連續(xù),則有2.設(shè))(xf在0x處可導,則有例如,當x很小時,xex??1,xx??)1ln([???)
【摘要】主要內(nèi)容典型例題第五章不定積分習題課積分法原函數(shù)選擇u有效方法基本積分表第一換元法第二換元法直接積分法分部積分法不定積分幾種特殊類型函數(shù)的積分一、主要內(nèi)
【摘要】一、和、差、積、商的求導法則二、反函數(shù)的求導法則三、復合函數(shù)的求導法則第二節(jié)求導法則與基本初等函數(shù)求導公式四、基本求導法則與求導公式五、小結(jié)思考題一、函數(shù)的和、差、積、商的求導法則定理1并且處也可導在點除分母不為零外們的和、差、積、商則它處可導在點如
【摘要】第十節(jié)函數(shù)的極值與最值一、函數(shù)的極值及其求法oxyab)(xfy?1x2x3x4x5x6xoxyoxy0x0x定義使得有則稱為的一個極大值點(或極小值點)極大值點與極小值點統(tǒng)稱為極值點.極大值與極小值統(tǒng)稱為極值.
2025-07-22 11:11
【摘要】第六節(jié)無窮小的比較一、無窮小的比較例如,xxx3lim20?xxxsinlim0?20sinlimxxx?.sin,,,02都是無窮小時當xxxx?極限不同,反映了趨向于零的“快慢”程度不同.;32要快得多比xx;sin大致相同與xx,0?,
2025-08-21 12:40
【摘要】二階線性微分方程)()()(22xfyxQdxdyxPdxyd???時,當0)(?xf二階線性齊次微分方程時,當0)(?xf二階線性非齊次微分方程n階線性微分方程).()()()(1)1(1)(xfyxPyxPyxPynnnn?????????第六節(jié)線性微分方程解的結(jié)構(gòu)])[(11?
2025-01-19 08:36
【摘要】三、微分的應(yīng)用,,0)()(00很小時且處的導數(shù)在點若xxfxxfy????例1?,,10問面積增大了多少厘米半徑伸長了厘米的金屬圓片加熱后半徑解,2rA??設(shè).,10厘米厘米???rrrrdAA???????2????).(2厘米??.)(0xxf???00xxxxdyy?
2025-07-22 11:17
【摘要】第二節(jié)可分離變量的微分方程dxxfdyyg)()(?可分離變量的微分方程.5422yxdxdy?例如,2254dxxdyy???解法???dxxfdyyg)()(設(shè))(yG和)(xF分別為)(yg和)(xf的原函數(shù),則CxFyG??)()(為微分方程的通解.例1.求微分
2025-08-01 16:24
【摘要】一、利用直角坐標系計算二重積分二、小結(jié)思考題第二節(jié)二重積分的計算法(1)如果積分區(qū)域為:,bxa??).()(21xyx????其中函數(shù)、在區(qū)間上連續(xù).)(1x?)(2x?],[ba一、利用直角坐標系(rightanglecoordinatesys
2025-08-21 12:45
【摘要】一、差分方程的簡單經(jīng)濟應(yīng)用二、小結(jié)第九節(jié)差分方程的簡單經(jīng)濟應(yīng)用一、差分方程的簡單經(jīng)濟應(yīng)用差分方程在經(jīng)濟領(lǐng)域的應(yīng)用十分廣泛,下面從具體的實例體會其應(yīng)用的場合和應(yīng)用的方法.??.01本利和年末的,求,且初始存款額為設(shè)為年利率,年存款總額,為設(shè)存款模型例一:tSrSSSrtStttt???解tttr
【摘要】主要內(nèi)容典型例題習題課第二章極限(一)極限的概念(二)連續(xù)的概念一、主要內(nèi)容左右極限兩個重要極限求極限的常用方法無窮小的性質(zhì)極限存在的充要條件判定極限存在的準則無窮小的比較極限的性質(zhì)數(shù)列極限函
2025-08-21 12:39