【摘要】不定積分的概念與性質不定積分的換元積分法不定積分的分部積分法積分表的用法第4章不定積分結束前頁結束后頁又如d(secx)=secxtanxdx,所以secx是secxtanx的原函數(shù).定義設f(x)在某區(qū)間上有定義,如果對該區(qū)間的任意點x
2025-07-18 00:00
【摘要】變速直線運動中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運動中路程為?21)(TTdttv設某物體作直線運動,已知速度)(tvv?是時間間隔],[21TT上t的一個連續(xù)函數(shù),且0)(?tv,求物體在這段時間內所經(jīng)過的路程.另一方面這段路程可表示為)()(12TsTs?第六節(jié)微積分基本定理一、問題
2025-07-22 11:18
【摘要】主要內容典型例題第五章不定積分習題課積分法原函數(shù)選擇u有效方法基本積分表第一換元法第二換元法直接積分法分部積分法不定積分幾種特殊類型函數(shù)的積分一、主要內
2025-08-11 11:12
【摘要】定義1設函數(shù))(xf在區(qū)間),[??a上連續(xù),且)()(xfxF??,如果極限????babdxxf)(lim存在,則稱此極限為函數(shù))(xf在無窮區(qū)間),[??a上的反常積分,記作???adxxf)(.???adxxf)(?????babdxxf)(lim當極限存在
2025-07-22 11:10
【摘要】目錄上頁下頁返回結束二、第二類換元法第二節(jié)一、第一類換元法換元積分法第四章目錄上頁下頁返回結束第二類換元法第一類換元法基本思路設,)()(ufuF??可導,CxF?)]([?)(d)(xuuuf????)()
2025-01-15 16:55
【摘要】數(shù)學系數(shù)學與應用數(shù)學2010級畢業(yè)論文不等式證明的積分法是利用積分的定義,性質,以及用一些特殊的積分不等式來證明不等式。定積的概念例1設在連續(xù),證明證明將區(qū)間進行等分,取因為兩邊取對數(shù)得兩邊在時取極限得積分中值定理法積分中值定理如果函數(shù)在上連續(xù),則在內至少存在一點,使得例2試證當時,.證明因為
2025-07-26 09:48
【摘要】返回后頁前頁返回后頁前頁§5微積分學基本定理一、變限積分與原函數(shù)的存在性本節(jié)將介紹微積分學基本定理,并用以證明連續(xù)函數(shù)的原函數(shù)的存在性.在此基礎上又可導出定積分的換元積分法與分部積分法.三、泰勒公式的積分型余項二、換元積分法與分部積分法返回返回后頁前頁返回后頁前頁
2025-08-20 09:08
【摘要】第4講定積分與微積分的基本定理★知識梳理★1、定積分概念定積分定義:如果函數(shù)在區(qū)間上連續(xù),用分點,將區(qū)間等分成幾個小區(qū)間,在每一個小區(qū)間上任取一點,作和,當時,上述和無限接近某個常數(shù),這個常數(shù)叫做函數(shù)在區(qū)間上的定積分,記作,即,這里、分別叫做積分的下限與上限,區(qū)間叫做積分區(qū)間,函數(shù)叫做被積函數(shù),叫做積分變量,叫做被積式.2、定積分性質(1);
2025-08-17 05:56
【摘要】微積分公式與定積分計算練習(附加三角函數(shù)公式)一、基本導數(shù)公式⑴⑵⑶⑷⑸⑹⑺⑻⑼⑽⑾⑿⒀⒁⒂⒃⒄⒅二、導數(shù)的四則運算法則三、高階導數(shù)的運算法則(1)
2025-03-25 01:57
【摘要】返回后頁前頁§4定積分的性質一、定積分的性質本節(jié)將討論定積分的性質,包括定積分的線性性質、關于積分區(qū)間的可加性、積分不等式與積分中值定理,這些性質為定積分研究和計算提供了新的工具.二、積分中值定理返回返回后頁前頁[,]()d()d.bbaaabk
2025-08-11 14:57
【摘要】主要內容典型例題第八章多元函數(shù)微分法及其應用習題課平面點集和區(qū)域多元函數(shù)的極限多元函數(shù)連續(xù)的概念極限運算多元連續(xù)函數(shù)的性質多元函數(shù)概念一、主要內容全微分的應用高階偏導數(shù)隱函數(shù)求導法則復合函數(shù)求導法
2025-08-21 12:43
【摘要】一、利用直角坐標系計算二重積分二、小結思考題第二節(jié)二重積分的計算法(1)如果積分區(qū)域為:,bxa??).()(21xyx????其中函數(shù)、在區(qū)間上連續(xù).)(1x?)(2x?],[ba一、利用直角坐標系(rightanglecoordinatesys
2025-08-21 12:45
【摘要】().,,.,.,.上冊我們研究了一元函數(shù)一個自變量的函數(shù)及其微分但在許多實際問題中常常會遇到一個變量依賴于多個變量的情形這就提出了多元函數(shù)的概念以及多元函數(shù)的微分和積分問題本章將在一元函數(shù)
2025-01-19 10:12
【摘要】一、函數(shù)極限的定義三、小結思考題二、函數(shù)極限的性質第二節(jié)函數(shù)的極限一、函數(shù)極限的定義在自變量的某個變化過程中,如果對應的函數(shù)值無限接近于某個確定的常數(shù),那么這個確定的數(shù)叫做自變量在這一變化過程中函數(shù)的極限。下面,我們將主要研究以下兩種情形:;的變化情形對應的函數(shù)值任意接近于有限值自
2025-08-21 12:44
【摘要】一、問題的提出二、導數(shù)的定義四、函數(shù)可導性與連續(xù)性的關系五、小結思考題三、導數(shù)的幾何意義第一節(jié)導數(shù)概念一、問題的提出0tt?,0時刻的瞬時速度求tt考慮最簡單的變速直線運動--自由落體運動,如圖,,0tt的時刻取一鄰近于,?運動時間ts???v平均速度
2025-08-21 12:41