【摘要】1梯形輔助線專題訓練題()班級姓名常見的梯形輔助線規(guī)律口訣為:梯形問題巧轉(zhuǎn)化,變?yōu)椤骱汀?要想盡快解決好,添加輔助線最重要;平移兩腰作出高,延長兩腰也是關(guān)鍵;記著平移對角線,上下底和差就出現(xiàn);如果出現(xiàn)腰中點,就把中位線細心連;上述方法不奏效,
2025-12-28 04:25
【摘要】梯形中的常見輔助線一、平移1、平移一腰:例1.如圖所示,在直角梯形ABCD中,∠A=90°,AB∥DC,AD=15,AB=16,BC=17.求CD的長.例2如圖,梯形ABCD的上底AB=3,下底CD=8,腰AD=4,求另一腰BC的取值范圍。2、平移兩腰:例3如圖,在梯形ABCD中,AD//BC,∠B+∠C=90
2025-06-22 16:00
【摘要】梯形輔助線專題訓練題()班級姓名常見的梯形輔助線規(guī)律口訣為:梯形問題巧轉(zhuǎn)化,變?yōu)椤骱汀?要想盡快解決好,添加輔助線最重要;平移兩腰作出高,延長兩腰也是關(guān)鍵;記著平移對角線,上下底和差就出現(xiàn);如果出現(xiàn)腰中點,就把中位線細心連;上述方法不奏效,過中點旋轉(zhuǎn)成全等;靈活添加輔助線,幫你度過梯形難關(guān);想要易解梯
2026-01-05 16:15
【摘要】平移腰作高補為三角形平移對角線其他方法轉(zhuǎn)化為三角形或平行四邊形等在梯形中常用的作輔助線方法開動腦筋靈活應用ABCDEFABCDABCD
2025-11-28 16:27
【摘要】相似專題課程:相似輔助線一、單選題(共5道,每道10分),在平行四邊形ABCD中,E為AB的中點,F(xiàn)為AD上一點,EF交AC于G,AF=2cm,DF=4cm,AG=3cm,則AC的長為(),的AB邊和AC邊上各取一點D和E,且使AD=AE,DE延長線與BC延長線相交于F,則下列式子正確的是()A.B.C.D.,△ABC中,ABAC,
2025-03-25 06:32
【摘要】輔助線的添加【知識要點】平面幾何是中學數(shù)學的一個重要組成部分,證明是平面幾何的重要內(nèi)容。許多初中生對幾何證明題感到困難,尤其是對需要添加輔助線的證明題,往往束手無策。在這里我們介紹"添加輔助線"在平面幾何中的運用。一、三角形中常見輔助線的添加1.與角平分線有關(guān)的ⅰ可向兩邊作垂線。ⅱ可作平行線,構(gòu)造等腰三角形ⅲ在角的兩邊截取相等的線
2025-04-16 12:57
【摘要】全等三角形問題中常見的輔助線的作法20常見輔助線的作法有以下幾種:1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對折”.2)遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”.3)遇到角平分線,可以自角平分線上的某一點向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對
2025-03-24 07:41
【摘要】(1)只見顯性中點而看不到隱藏的中點;(2)挖掘出隱藏的中點后,卻不會將各中點條件合理地進行篩選與重組;(3)構(gòu)造出待證全等三角形后,常常是找邊容易找角難,對于角相等的證明方法過于單一且不夠靈活.1、如圖,在等腰直角三角形ABC中,∠ABC=90°,D為邊AC的中點,過點D作DE⊥DF,交AB于點E,交B
2025-07-26 00:14
【摘要】無為三中八年級數(shù)學專題學習幾何證明中常見的“添輔助線”方法(2022年安徽)如圖,AD是△ABC的邊BC上的高,由下列條件中的某一個就能推出△ABC是等腰三角形的是_________________。(把所有正確答案的序號都填寫在橫線上)①∠BA
2025-05-06 12:02
【摘要】立體幾何作輔助線的一般思路和常用方法做立體幾何題,性質(zhì)定理是打開解題思路的關(guān)鍵,也是引入輔助線的基礎(chǔ),它可告訴我們應該如何作輔助線,其中最常用的是線面平行和面面垂直性質(zhì)定理。1、若題中給出直線a∥面α這一條件,做題時首先考慮的是:要運用線面平行的性質(zhì)定理,對照該定理中的條件就會想到應過a作一平面β和α相交于b,則得a∥b,然后再根據(jù)其
2026-01-12 13:41
【摘要】攻擊線、操盤線、輔助線、生命線、決策線、趨勢線一、攻擊線所謂攻擊線就是我們?nèi)粘Kf的五日均線。有的朋友覺得很可笑,五日均線還用講嗎,這個傻瓜都知道。事實上問題就出在這里,越簡單的你反而不會花大力氣去學習深究其里。這里需要給大家強調(diào)一點,這些特定稱謂一般指常用的日線系統(tǒng),但攻擊線也可用于分時、周線、月線甚至是年線,如果你是中線持股者五周線就是你的攻擊線,其他依次類推。攻擊線作用有三
2025-06-28 01:47
【摘要】專題講義平行四邊形+幾何輔助線的作法一、知識點1.四邊形的內(nèi)角和與外角和定理:(1)四邊形的內(nèi)角和等于360°;(2)四邊形的外角和等于360°.2.多邊形的內(nèi)角和與外角和定理:(1)n邊形的內(nèi)角和等于(n-2)180°;(2)任意多邊形的外角和等于360°
2025-03-24 05:53
【摘要】與平行四邊形有關(guān)的常用輔助線作法歸類解析本文結(jié)合例題歸納六類與平行四邊形有關(guān)的常見輔助線,供同學們借鑒:第一類:連結(jié)對角線,把平行四邊形轉(zhuǎn)化成兩個全等三角形。例1如左下圖1,在平行四邊形中,點在對角線上,且,請你以為一個端點,和圖中已標明字母的某一點連成一條新線段,猜想并證明它和圖中已有的某一條線段相等(只需證明一條線段即可)⑴連結(jié)⑵
2025-06-26 21:57
【摘要】專題學習幾何證明中常見的“添輔助線”方法“周長問題”的轉(zhuǎn)化Ⅰ.連結(jié)目的:構(gòu)造全等三角形或等腰三角形適用情況:圖中已經(jīng)存在兩個點—X和Y語言描述:連結(jié)XY注意點:雙添-在圖形上添虛線
2025-08-01 16:44
【摘要】梯形中常見輔助線例題精講,在梯形ABCD中,AD∥BC,∠B=70°,∠C=40°,求證:CD=BC-AD.延長兩腰,將梯形轉(zhuǎn)化成三角形.EDBCA平移一腰,梯形轉(zhuǎn)化成:平行四邊和三角形.DBCAF2.如圖,在梯形ABCD中,A
2025-10-25 23:14