【摘要】第1頁共3頁八年級數(shù)學全等三角形輔助線添加之截長補短(全等三角形)拔高練習試卷簡介:本講測試題共兩個大題,第一題是證明題,共7個小題,每小題10分;第二題解答題,2個小題,每小題15分。學習建議:本講內(nèi)容是三角形全等的判定——輔助線添加之截長補短,其中通過截長補短來添加輔助線是重點,也是難點。希望
2024-08-20 22:00
【摘要】構(gòu)造等腰三角形解題的輔助線做法呂海艷等腰三角形是一種特殊的三角形,常與全等三角形的相關(guān)知識結(jié)合在一起考查。在許多幾何問題中,通常需要構(gòu)造等腰三角形才能使問題獲解。那么如何構(gòu)造等腰三角形呢?一般有以下四種方法:(1)依據(jù)平行線構(gòu)造等腰三角形;(2)依據(jù)倍角關(guān)系構(gòu)造等腰三角形;(3)依據(jù)角平分線+垂線構(gòu)造等腰三角形;(4)依據(jù)120°角或60°角,常補形構(gòu)
2025-03-25 04:37
【摘要】證明三角形全等的常見題型全等三角形是初中幾何的重要內(nèi)容之一,全等三角形的學習是幾何入門最關(guān)鍵的一步,這部分內(nèi)容學習的好壞直接影響著今后的學習。而一些初學的同學,雖然學習了幾種判定三角形全等的公理和推論,但往往仍不知如何根據(jù)已知條件證明兩個三角形全等。在輔導時可以抓住以下幾種證明三角形全等的常見題型,進行分析。一、已知一邊與其一鄰角對應相等1.證已知角的另一
2024-11-19 19:13
【摘要】三角形全等的判定第1課時全等三角形與全等三角形的判定條件1.的兩個三角形叫做全等三角形,全等三角形的對應邊____,對應角____.2.兩個三角形只有一組或兩組對應相等的元素,這兩個三角形全等;兩個三角形有三組對應相等的元素,這兩個三角形
2024-11-09 04:27
【摘要】ABCA’B’C’lAABBCCA’’A’’’B’’B”’C’’(C’’’)圖形經(jīng)過軸對稱、平移、旋轉(zhuǎn)后,位置發(fā)生了變化,但形狀、大小不變。全等三角形性質(zhì)判定對應邊相等對應角相
2024-08-04 19:10
【摘要】第一篇:證明三角形全等的常見題型 證明三角形全等的常見題型 全等三角形是初中幾何的重要內(nèi)容之一,全等三角形的學習是幾何入門最關(guān)鍵的一步,這部分內(nèi)容學習的好壞直接影響著今后的學習。而一些初學的同學,...
2024-10-25 12:28
【摘要】山亭育才中學翟夫連①∵AD是△ABC的中線∴BD=CDABDC②S△ABD=S△ADC(等底同高)③中線的取值范圍常用的輔助線(見中線加倍延長構(gòu)造全等三角形)AB-AC2AB+AC2AD1中線1中線④重心(三
2024-11-09 22:05
【摘要】全等三角形作輔助線經(jīng)典例題常見輔助線的作法有以下幾種:1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對折”.2)遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”.3)遇到角平分線,可以自角平分線上的某一點向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對折”,所考知識點
2025-03-24 07:38
【摘要】全等三角形及其輔助線作法常見輔助線的作法有以下幾種:1)遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”(或構(gòu)造平行線的X型全等).2)遇到角平分線,一是可以自角平分線上的某一點向角的兩邊作垂線,二是在角的兩邊上截取相同的線段,構(gòu)成全等。利用的思維模式是三角形全等變換中的“對折”,也是運用了角的對稱性。3)截長法與
2025-06-23 21:59
【摘要】三角形中做輔助線的技巧口訣:三角形圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。線段和差及倍半,延長縮短可試驗。線段和差不等式,移到同一三角去。三角形中兩中點,連接則成中位線。三角形中有中線,延長中線等中線。1、由角平分線想到的輔助線
2025-03-24 12:31
【摘要】相似三角形與全等三角形的綜合復習友情提示:請根據(jù)課本相關(guān)內(nèi)容,快速解決下列問題,8分鐘后交流展示你的成果?!疚曳此?,我梳理】(一)相似三角形1.定義:各角對應________,各邊對應成________的兩個三角形叫做相似三角形.2.判定(1)平行于三角
2024-11-24 14:14
【摘要】專業(yè)資料分享圓中常見輔助線的做法一.遇到弦時(解決有關(guān)弦的問題時),或作垂直于弦的半徑(或直徑)或再連結(jié)過弦的端點的半徑。作用:①利用垂徑定理;②利用圓心角及其所對的弧、弦和弦心距之間的關(guān)系;③利用弦的一半、弦心距和半徑組成直角三角形,根據(jù)勾股定理求
2025-05-16 03:14
【摘要】......全等三角形問題中常見的輔助線的作法常見輔助線的作法有以下幾種:最主要的是構(gòu)造全等三角形,構(gòu)造兩條邊之間的相等,兩個角之間的相等。1、添加輔助線的方法和語言表述(1)作線段:連接……;(2)作平行線:過點……作……
2025-03-24 07:39
【摘要】梯形中的常見輔助線一、平移1、平移一腰:例1.如圖所示,在直角梯形ABCD中,∠A=90°,AB∥DC,AD=15,AB=16,BC=17.求CD的長.例2如圖,梯形ABCD的上底AB=3,下底CD=8,腰AD=4,求另一腰BC的取值范圍。2、平移兩腰:例3如圖,在梯形ABCD中,AD//BC,∠B+∠C=90
2025-06-22 16:00
【摘要】全等三角形問題中常見的輔助線的作法總論:全等三角形問題最主要的是構(gòu)造全等三角形,構(gòu)造兩條邊之間的相等,構(gòu)造兩個角之間的相等“三線合一”法:遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題:倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形3.遇到角平分線,可以自角平分線上的某一點向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對折”,所考知識點常常是角平分線
2025-03-22 14:02