freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

完全平方公式教學(xué)設(shè)計(jì)[五篇模版]-wenkub

2024-11-04 22 本頁(yè)面
 

【正文】 應(yīng)以學(xué)生的發(fā)展為本,學(xué)生的能力培養(yǎng)為重,尤其是創(chuàng)新、創(chuàng)造能力,以及培養(yǎng)學(xué)生良好的個(gè)性品質(zhì)等。ab+b(漏掉2倍),、作業(yè) P38 教后反思第四篇:完全平方公式教學(xué)設(shè)計(jì)(實(shí)用8篇)篇1:《完全平方公式》教學(xué)設(shè)計(jì)一、教材分析:(一)教材的地位與作用本節(jié)內(nèi)容主要研究的是完全平方公式的推導(dǎo)和公式在整式乘法中的應(yīng)用。(1)分解因式前注意是否符合公式的形式和特點(diǎn);(2)平方項(xiàng)前面是負(fù)數(shù)時(shí),先把負(fù)號(hào)提到括號(hào)前面;(3)多項(xiàng)式中有公因式應(yīng)先提公因式,再進(jìn)一步分解;(4)完全平方公式中的a和b是多項(xiàng)式時(shí),:點(diǎn)評(píng),.【設(shè)計(jì)意圖】 梳理知識(shí)結(jié)構(gòu)形成知識(shí)體系.【板書(shū)設(shè)計(jì)】完全平方公式(a+b)2=a2+2ab+b2,(ab)2 = a22ab +b2.【備課反思】,了解公式的幾何背景,了解公式的幾何背景,、化歸、對(duì)稱(chēng)、數(shù)形結(jié)合、培養(yǎng)學(xué)生的發(fā)現(xiàn)能力、求簡(jiǎn)意識(shí)、應(yīng)用意識(shí)、勇于探索的精神和善于觀察,理解公式的本質(zhì),并會(huì)運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算,理解公式中的字母含義,在整個(gè)教學(xué)活動(dòng)中也存在著一些不足的地方,從時(shí)間安排來(lái)看,推導(dǎo)公式時(shí)時(shí)間用得稍微多了點(diǎn),以致于后面覺(jué)得時(shí)間緊,學(xué)生活動(dòng)少,雖然該講的地方已講完,但收尾太草率,所以在今后的教學(xué)中應(yīng)把會(huì)發(fā)生的各種問(wèn)題考慮周全,留一定的時(shí)間進(jìn)行糾錯(cuò)或進(jìn)行教學(xué)反饋或加強(qiáng)師生互動(dòng),使新課程的改革從我做起,從我們大家一起做起,為教育事業(yè)的發(fā)展貢獻(xiàn)自己的力量.第三篇:《完全平方公式》教學(xué)設(shè)計(jì)教學(xué)目標(biāo)在具體情景中進(jìn)一步理解完全平方公式,、難點(diǎn)一、議一議(a+b)的正方形面積是多少?、b拍的兩個(gè)正方形面積和是多少?(1)(2)的結(jié)果嗎?:學(xué)生回答(1)(a+b)(2)a +b(3)因?yàn)?a+b)= a +2ab+b ,所以(a+b)(a +b)=a +2ab+bab =2ab,即(1)中的正方形面積比(2)、做一做,師:要利用完全平方公式計(jì)算,則要?jiǎng)?chuàng)設(shè)符合公式特征的兩數(shù)和或兩數(shù)差的平方,:,: =(100+2) =(2003)=100 +2 lOO 2+2,=2002 2O0 3十3,=10000+400+4 =400001200+9 =10404 =38809例2.計(jì)算:1.(x3)x 2.(2a+b)(2ab+)師生共同分析:1中(x3),板書(shū)如下:解:1.(x3)x = x +6x+9x =6x+9師問(wèn):此題還有其他方法解嗎?引導(dǎo)學(xué)生逆用平方差公式,:分小組討論第(2),:2.(2a+b)(2ab+)=[2a+(b)][2a(b)]=(2a)(b)=4a(b3b+)=4ab +3b三、試一試計(jì)算:1.(a+b+c)2.(a+b)師生共同分析:對(duì)于1要把多項(xiàng)式完全平方轉(zhuǎn)化為二項(xiàng)式的完全平方,要使用加法結(jié)合律,(a+b+c)=[a+(b+c)]對(duì)于(2)可化為(a+b)=(a+b)(a+b).學(xué)生動(dòng)筆:在練習(xí)本上解答,:1.(a+b+c)=[a+(b+c)] =(a+b)+2(a+b)c+ c = a +2ab+b +2ac+2bc+c = a +b +c +2ab+2ac+2bc四、隨堂練習(xí)P381五、小結(jié)本節(jié)課進(jìn)一步學(xué)習(xí)了完全平方公式,不能出現(xiàn)(a177。3y+(3y)=4x+12xy+9y生:學(xué)生活動(dòng):發(fā)現(xiàn)規(guī)律.(1)原式的特點(diǎn):兩數(shù)和的平方.(2)結(jié)果的項(xiàng)數(shù)特點(diǎn):等于它們平方的和,加上它們乘積 的兩倍.(3)三項(xiàng)系數(shù)的特點(diǎn)(特別是符號(hào)的特點(diǎn)).(4)三項(xiàng)與原多項(xiàng)式中兩個(gè)單項(xiàng)式的關(guān)系.總結(jié)完全平方公式的語(yǔ)言描述:引出課題:完全平方公式2(ab)師:又等于什么呢?學(xué)生可能會(huì)有不同的想法如:利用多項(xiàng)式乘以多項(xiàng)式的運(yùn)算法則(ab)2=(ab)(ab)=a2abab+b2=a22ab+b2(ab)2=[a+(b)]2=a2+2第一篇:完全平方公式教學(xué)設(shè)計(jì)《完全平方公式》教學(xué)設(shè)計(jì)教材分析:本節(jié)內(nèi)容主要研究的是完全平方公式的推導(dǎo)和公式在整式乘法中的應(yīng)用.它是在學(xué)生學(xué)習(xí)了代數(shù)式的概念、整式的加減法、冪的運(yùn)算和整式的乘法后進(jìn)行學(xué)習(xí)的,其地位和作用主要體現(xiàn)在以下幾方面:(1)整式是初中代數(shù)研究范圍內(nèi)的一塊重要內(nèi)容,整式的運(yùn)算又是整式中 一大主干,乘法公式則是在學(xué)習(xí)了單項(xiàng)式乘法、多項(xiàng)式乘法之后來(lái)進(jìn)行學(xué)習(xí)的;一方面是對(duì)多項(xiàng)式乘法中出現(xiàn)的較為特殊的算式的一種歸納、總結(jié);另一方面,乘法公式的推導(dǎo)是初中代數(shù)中運(yùn)用推理方法進(jìn)行代數(shù)式恒等變形的開(kāi)端,通過(guò)乘法公式的學(xué)習(xí)對(duì)簡(jiǎn)化某些整式的運(yùn)算、培養(yǎng)學(xué)生的求簡(jiǎn)意識(shí)有較大好處.(2)乘法公式是后續(xù)學(xué)習(xí)的必備基礎(chǔ),不僅對(duì)學(xué)生提高運(yùn)算速度、準(zhǔn)確率 有較大作用,更是以后學(xué)習(xí)因式分解、分式運(yùn)算的重要基礎(chǔ),同時(shí)也具有培養(yǎng)學(xué)生逐漸養(yǎng)成嚴(yán)密的邏輯推理能力的功能.(3)公式的發(fā)現(xiàn)與驗(yàn)證給學(xué)生體驗(yàn)規(guī)律發(fā)現(xiàn)的基本方法和基本過(guò)程提供了 很好模式. 教學(xué)目標(biāo): 知識(shí)與技能:1.理解公式的推導(dǎo)過(guò)程,了解公式的幾何背景;2.會(huì)應(yīng)用公式進(jìn)行簡(jiǎn)單的計(jì)算. 過(guò)程與方法:1.經(jīng)歷探索完全平方公式的過(guò)程,進(jìn)一步發(fā)展符號(hào)感和推理能力;2.重視學(xué)生對(duì)算理的理解,有意識(shí)地培養(yǎng)他們有條理的思考和表達(dá)能力;3.培養(yǎng)學(xué)生敢于挑戰(zhàn),勇于探索的精神和善于觀察,大膽創(chuàng)新的思維品質(zhì). 情感態(tài)度與價(jià)值觀:1.滲透建模、化歸、換元、數(shù)形結(jié)合等思想方法,培養(yǎng)學(xué)生的發(fā)現(xiàn)能力、求簡(jiǎn)意識(shí)、應(yīng)用意識(shí)、解決問(wèn)題的能力和創(chuàng)新能力;2.了解數(shù)學(xué)的歷史,激發(fā)學(xué)習(xí)數(shù)學(xué)興趣;3.鼓勵(lì)學(xué)生自己探索算法的多樣化,有意識(shí)地培養(yǎng)學(xué)生的創(chuàng)新能力. 教學(xué)重難點(diǎn):重點(diǎn):1.體會(huì)公式的發(fā)現(xiàn)和推導(dǎo)過(guò)程,理解公式的本質(zhì);2.會(huì)運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算.難點(diǎn):1.完全平方公式的推導(dǎo)及其幾何解釋?zhuān)?.完全平方公式結(jié)構(gòu)特點(diǎn)及其應(yīng)用;3.從廣泛意義上理解公式中的字母含義,判明要計(jì)算的代數(shù)式是哪兩數(shù)的和(差)的平方. 教學(xué)過(guò)程:一、復(fù)習(xí)導(dǎo)入:師:上節(jié)課我們認(rèn)識(shí)了“平方差公式”,大家能展示一下自己的學(xué)習(xí)成果嗎?生:(愿意)師:我們用平方差公式來(lái)做幾道練習(xí).(1)(2x+3)(2x3);(2)(m4)(m+4);(3)(a+b+c)(a+bc).(學(xué)生練習(xí)后板演過(guò)程)可能出現(xiàn)的答案:222(2x)3=4x9(正解)解:(1)原式=;222或 原式=2x3=2x9(錯(cuò)解).222(2)原式=[(4)+m][(4)m]=(4)m=16m(正解); 222(m4)(m+4)=(m4)=m+16(正解)或 原式=;222m(4)=m16(錯(cuò)解)或 原式.(3)原式=[(a+b)+c][(a+b)c] 22 =(a+b)c222 =a+bc(錯(cuò)解)。ab)= a 177。它是在學(xué)生學(xué)習(xí)了代數(shù)式的概念、整式的加減法、冪的運(yùn)算和整式的乘法后進(jìn)行學(xué)習(xí)的,其地位和作用主要體現(xiàn)在以下幾方面:(1)整式是初中代數(shù)研究范圍內(nèi)的一塊重要內(nèi)容,整式的運(yùn)算又是整式中一大主干,乘法公式則是在學(xué)習(xí)了單項(xiàng)式乘法、多項(xiàng)式乘法之后來(lái)進(jìn)行學(xué)習(xí)的;一方面是對(duì)多項(xiàng)式乘法中出現(xiàn)的較為特殊的算式的一種歸納、總結(jié);另一方面,乘法公式的推導(dǎo)是初中代數(shù)中運(yùn)用推理方法進(jìn)行代數(shù)式恒等變形的開(kāi)端,通過(guò)乘法公式的學(xué)習(xí)對(duì)簡(jiǎn)化某些整式的運(yùn)算、培養(yǎng)學(xué)生的求簡(jiǎn)意識(shí)有較大好處。根據(jù)以上指導(dǎo)思想,同時(shí)參照義務(wù)教育階段《數(shù)學(xué)課程標(biāo)準(zhǔn)》的要求,確定本節(jié)課的教學(xué)目標(biāo)如下:知識(shí)目標(biāo):理解公式的推導(dǎo)過(guò)程,了解公式的幾何背景,會(huì)應(yīng)用公式進(jìn)行簡(jiǎn)單的計(jì)算。本節(jié)的難點(diǎn)是從廣泛意義上理解公式中的字母含義,判明要計(jì)算的代數(shù)式是哪兩數(shù)的和(差)的平方。采用小組討論,大組競(jìng)賽等多種形式激發(fā)學(xué)習(xí)興趣。關(guān)于兩數(shù)差的平方公式,我將為學(xué)生提供三種不同的思路,由學(xué)生自己選擇學(xué)習(xí)、理解,然后再歸納的方法進(jìn)行,再通過(guò)分層次練習(xí),加以鞏固。(a+b)(根據(jù)初一學(xué)生年齡特點(diǎn),采用圖形變化來(lái)激發(fā)學(xué)生學(xué)習(xí)興趣)問(wèn)題是知識(shí)、能力的生長(zhǎng)點(diǎn),通過(guò)富有實(shí)際意義的問(wèn)題能激活學(xué)生原有認(rèn)知,促使學(xué)生主動(dòng)地進(jìn)行探索和思考。(學(xué)生回答)(x+2y)2是哪兩個(gè)數(shù)的和的`平方?(x+2y)2=( )2+2( )( )+( )2(2x—5y)2是哪兩個(gè)數(shù)的差的平方?(2x+5y)2=( )2+2( )( )+( )2變式 (2x—5y)2可以看成是哪兩個(gè)數(shù)的和的平方?利用多項(xiàng)式乘法推導(dǎo)公式,使學(xué)生了解公式的來(lái)源以及理解乘法公式的本質(zhì)。培養(yǎng)學(xué)生學(xué)習(xí)的主動(dòng)性,開(kāi)闊學(xué)生的思路。三、整理新知形成結(jié)構(gòu)完全平方公式并分析公式左右的特征。已知 ,求x和y的值。(2)進(jìn)一步幫助學(xué)生掌握換元法。提出一個(gè)問(wèn)題,引導(dǎo)學(xué)生用學(xué)習(xí)研究完全平方公式的方法去研究公式的拓展變形問(wèn)題。(1)作業(yè)1主要以培養(yǎng)學(xué)習(xí)良好的學(xué)習(xí)習(xí)慣為目的。在減輕學(xué)生的課業(yè)負(fù)擔(dān)同時(shí),注重人本思想,以學(xué)生的能力發(fā)展為重。數(shù)形結(jié)合的數(shù)學(xué)思想和方法。嘗試用自己的語(yǔ)言敘述完全平方公式:完全平方公式的幾何意義:閱讀課本64頁(yè),完成填空。利用完全平方公式計(jì)算:(a+b+c)2 (2) (a—b)3三、學(xué)習(xí)對(duì)照學(xué)習(xí)目標(biāo),通過(guò)預(yù)習(xí),你覺(jué)得自己有哪些方面的收獲?又存在哪些方面的疑惑?四、自我測(cè)試下列計(jì)算是否正確,若不正確,請(qǐng)訂正;(1) (—1+3a)2=9a2—6a+1(2) (3x2— )2=9x4—(3) (xy+4)2=x2y2+16(4) (a2b—2)2=a2b2—2a2b+4利用乘法公式計(jì)算:(1) (3x+1)2(2) (a—3b)2(3) (—2x+ )2(4) (—3m—4n)2利用乘法公式計(jì)算:9992先化簡(jiǎn),再求值;( m—3n)2—( m+3n)2+2,其中m=2,n=3五、思維拓展如果x2—kx+81是一個(gè)完全平方公式,則k的值是( )多項(xiàng)式4x2+1加上一個(gè)單項(xiàng)式后,使它能成為一個(gè)整式的完全平方,那么加上的單項(xiàng)式可以是( )已知(x+y)2=9, (x—y)2=5 ,求xy的值x+y=4 ,x—y=10 ,那么xy=( )已知x— =4,則x2+ =( )篇3:《完全平方公式》教學(xué)設(shè)計(jì)教學(xué)目標(biāo)在具體情景中進(jìn)一步理解完全平方公式,能正確運(yùn)用完全平方公式和平方差公式進(jìn)行計(jì)算.重點(diǎn)、難點(diǎn)根據(jù)公式的特征及問(wèn)題的特征選擇適當(dāng)?shù)墓接?jì)算.教學(xué)過(guò)程一、議一議(a+b)的正方形面積是多少?、b拍的兩個(gè)正方形面積和是多少?(1)(2)的結(jié)果嗎?:學(xué)生回答(1)(a+b)(2)a +b(3)因?yàn)?a+b) = a +2ab+b ,所以 (a+b) (a +b )=a +2ab+b a b =2ab,即(1)中的正方形面積比(2)中的正方形面積大.二、做一做例1. 利用完全平方式計(jì)算1. 102 , 2. 197師:要利用完全平方公式計(jì)算,則要?jiǎng)?chuàng)設(shè)符合公式特征的兩數(shù)和或兩數(shù)差的平方,且計(jì)算盡可能簡(jiǎn)便.學(xué)生活動(dòng):,: =(100+2) =(2003) =100 +2 lOO 2+2, =200 2 2O0 3十3 ,=10000+400+4 =400001200+9 =10404 =38809例2.計(jì)算:1.(x3) x 2.(2a+b )(2ab+ )師生共同分析:1中(x3) 可利用完全平方公式.,板書(shū)如下:解:1. (x3) x = x +6x+9x =6x+9師問(wèn):此題還有其他方法解嗎?引導(dǎo)學(xué)生逆用平方差公式,從而培養(yǎng)學(xué)生創(chuàng)新精神.學(xué)生活動(dòng):分小組討論第(2),難度較大.教師要引導(dǎo)學(xué)生使用加法結(jié)合律,.:2. (2a+b )(2ab+ )=[2a+(b )][2a(b )]=(2a) (b ) =4a (b3b+ )=4a b +3b三、試一試計(jì)算:1.(a+b+c)2. (a+b)師生共同分析:對(duì)于1要把多項(xiàng)式完全平方轉(zhuǎn)化為二項(xiàng)式的完全平方,要使用加法結(jié)合律,(a+b+c) =[a+(b+c)]對(duì)于(2)可化為(a+b) =(a+b)(a+b) .學(xué)生動(dòng)筆:在練習(xí)本上解答,并與同伴交流你的39。b) = a 177。如本課中梯形、圓的面積公式。用這些抽象出的具有一般性的公式解決一些問(wèn)題,會(huì)給我們認(rèn)識(shí)和改造世界帶來(lái)很多方便。2.在教學(xué)過(guò)程中,應(yīng)使學(xué)生認(rèn)識(shí)有時(shí)問(wèn)題的解決并沒(méi)有現(xiàn)成的公式可套,這就需要學(xué)生自己嘗試探求數(shù)量之間的關(guān)系,在已有公式的基礎(chǔ)上,通過(guò)分析和具體運(yùn)算推導(dǎo)新公式。六、師生互動(dòng)活動(dòng)設(shè)計(jì)教者投影顯示推導(dǎo)梯形面積計(jì)算公式的圖形,學(xué)生思考,師生共同完成例1解答;教者啟發(fā)學(xué)生求圖形的面積,師生總結(jié)求圖形面積的公式.七、教學(xué)步驟(一)創(chuàng)設(shè)情景,復(fù)習(xí)引入師:同學(xué)們已經(jīng)知道,代數(shù)的一個(gè)重要特點(diǎn)就是用字母表示數(shù),用字母表示數(shù)有很多應(yīng)用,公式就是其中之一,我們?cè)谛W(xué)里學(xué)過(guò)許多公式,請(qǐng)大家回憶一下,我們已經(jīng)學(xué)過(guò)哪些公式,教法說(shuō)明,讓學(xué)生一開(kāi)始就參與課堂教學(xué),使學(xué)生在后面利用公式計(jì)算感到不生疏.在學(xué)生說(shuō)出幾個(gè)公式后,師提出本節(jié)課我們應(yīng)在小學(xué)學(xué)習(xí)的基礎(chǔ)上,研究如何運(yùn)用公式解決實(shí)際問(wèn)題.板書(shū):公式師:小學(xué)里學(xué)過(guò)哪些面積公式?板書(shū):S=ah(出示投影1)。培養(yǎng)學(xué)生在獨(dú)立思考的基礎(chǔ)上,積極參與對(duì)數(shù)學(xué)問(wèn)題的討論,敢于發(fā)表自己的見(jiàn)解。教師歸納:當(dāng)我們對(duì)差與和加以區(qū)分時(shí),兩個(gè)公式是有區(qū)別的,區(qū)別是其結(jié)果的中間項(xiàng)一個(gè)是“減”一個(gè)是“加”,注意到區(qū)別有助于計(jì)算的準(zhǔn)確;另一方面,當(dāng)我們對(duì)差與和不加區(qū)分,全部理解成“加項(xiàng)”時(shí),那么兩個(gè)公式從結(jié)構(gòu)上來(lái)看就是一致的了,其結(jié)構(gòu)都是“兩項(xiàng)和的平方,等于它們的平方和,加上它們的積的兩倍。思考:與,與相等嗎?為什么?利用整體的方法判斷,把看成一個(gè)數(shù),則是它的相反數(shù),相反數(shù)的奇次方是相反的,所以它們不相等。五、小結(jié)師生共同回顧完全平方公式的結(jié)構(gòu)特點(diǎn),體會(huì)公式的作用,交流計(jì)算的
點(diǎn)擊復(fù)制文檔內(nèi)容
研究報(bào)告相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1