freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

正弦定理教案[定稿]-wenkub

2024-10-06 07 本頁面
 

【正文】 (2)對于解三角形中的復雜運算可使用計算器.【例2】在△ABC中,已知A=20cm,B=28cm,A=40176。+176。,B=176。Cos(A90176。=j,過點A作與垂直的單位向量j,則j與的夾角為A90176。+C,j與的夾角為90176。C.由向量的加法原則可得 ,為了與圖中有關角的三角函數(shù)建立聯(lián)系,我們在上面向量等式的兩邊同取與向量j的數(shù)量積運算,得到 由分配律可得. ∴|j|Cos90176。θ)進行轉化.師這一轉化產生了新角90176。第一篇:正弦定理教案[定稿] 正弦定理和余弦定理 正弦定理從容說課本章內容是處理三角形中的邊角關系,與初中學習的三角形的邊與角的基本關系有密切的聯(lián)系,與已知三角形的邊和角相等判定三角形全等的知識也有著密切的聯(lián)系.教科書在引入正弦定理內容時,讓學生從已有的幾何知識出發(fā),提出探究性問題“在任意三角形中有大邊對大角,、角的關系準確量化的表示呢?”在引入余弦定理內容時,提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據三角形全等的判定方法,這個三角形是大小、也就是研究如何從已知的兩邊和它們的夾角計算出三角形的另一邊和兩個角的問題”.這樣,用聯(lián)系的觀點,從新的角度看過去的問題,使學生對于過去的知識有了新的認識,同時使新知識建立在已有知識的堅實基礎上,形成良好的知識結構.; .; .教具準備直角三角板一個三維目標一、知識與技能 ,掌握正弦定理的內容及其證明方法; .二、過程與方法 ,共同探究在任意三角形中,邊與其對角的關系; 、推導、比較,由特殊到一般歸納出正弦定理; .三、情感態(tài)度與價值觀 ; ,通過三角函數(shù)、正弦定理、向量的數(shù)量積等知識間的聯(lián)系來體現(xiàn)事物之間的普遍聯(lián)系與辯證統(tǒng)一.教學過程導入新課 師如右圖,固定△ABC的邊CB及∠B,使邊AC繞著頂點C轉動.師思考:∠C的大小與它的對邊AB的長度之間有怎樣的數(shù)量關系?生顯然,邊AB的長度隨著其對角∠C的大小的增大而增大.師能否用一個等式把這種關系精確地表示出來? 師在初中,我們已學過如何解直角三角形,下面就首先來探討直角三角形中,角與邊的等式關系.如右圖,在Rt△ABC中,設BC =A,AC =B,AB =C,根據銳角三角函數(shù)中正弦函數(shù)的定義,有=sinA,=sinB,又sinC=1=,,.推進新課 [合作探究]師那么對于任意的三角形,以上關系式是否仍然成立?(由學生討論、分析)生可分為銳角三角形和鈍角三角形兩種情況: 如右圖,當△ABC是銳角三角形時,設邊AB上的高是CD,根據任意角三角函數(shù)的定義,有CD=AsinB=BsinA,則,同理,.(當△ABC是鈍角三角形時,解法類似銳角三角形的情況,由學生自己完成)正弦定理:在一個三角形中,各邊和它所對角的正弦的比相等,即.師是否可以用其他方法證明這一等式?生可以作△ABC的外接圓,在△ABC中,令BC=A,AC=B,AB=C,根據直徑所對的圓周角是直角以及同弧所對的圓周角相等,來證明這一關系.師很好!這位同學能充分利用我們以前學過的知識來解決此問題,△ABC中,已知BC=A,AC=B,AB=C,作△ABC的外接圓,O為圓心,連結BO并延長交圓于B′,設BB′= ∠BAB′=90176。θ,這就為輔助向量j的添加提供了線索,為方便進一步的運算,輔助向量選取了單位向量j,而j垂直于三角形一邊,且與一邊夾角出現(xiàn)了90176。+|j|Cos(90176。+B,可得.(此處應強調學生注意兩向量夾角是以同起點為前提,防止誤解為j與的夾角為90176。,j與的夾角為90176。,即A), ∴AsinC=CsinA. ∴ 另外,過點C作與垂直的單位向量j,則j與的夾角為90176。,A= cm,解三角形.分析:此題屬于已知兩角和其中一角所對邊的問題,直接應用正弦定理可求出邊B,若求邊C,再利用正弦定理即可.解:根據三角形內角和定理, C=180176。)=176。解三角形(角度精確到1176。或B≈116176。(40176。時, C=180176。)=24176。(2)A=28,B=20,A=45176。A2≈115176。(30176。時,C2=180176。)=35176。+150176。(45176。,B2≈139176。(41176。已知兩邊和其中一邊的對角解三角形.布置作業(yè)(一) 第2題.(二)預習內容:課本P5~P 8余弦定理 [預習提綱](1)復習余弦定理證明中所涉及的有關向量知識.(2)余弦定理如何與向量產生聯(lián)系.(3)利用余弦定理能解決哪些有關三角形問題.板書設計正弦定理 : : ,能夠解決兩類問題:(1)平面幾何法(1)已知兩角和一邊(2)向量法(2)已知兩邊和其中一邊的對角第二篇:《正弦定理》教案《正弦定理》教學設計一、教學目標分析知識與技能:通過對銳角三角形中邊與角的關系的探索,發(fā)現(xiàn)正弦定理;掌握正弦定理的內容及其證明方法;能利用正弦定理解三角形以及利用正弦定理解決簡單的實際問題。培養(yǎng)學生處理解三角形問題的運算能力和探索數(shù)學規(guī)律的推理能力,并培養(yǎng)學生堅忍不拔的意志、實事求是的科學態(tài)度和樂于探索、勇于創(chuàng)新的精神。在教法上,根據教材的內容和編排的特點,為更有效的突出重點,突破難點,教學中采用探究式課堂教學模式,首先從學生熟悉的銳角三角形情形入手,設計恰當?shù)膯栴}情境,將新知識與學生已有的知識建立起密切的聯(lián)系,通過學生自己的親身體驗,使學生經歷正弦定理的發(fā)現(xiàn)過程,激發(fā)學生的求知欲,調動學生主動參與的積極性,引導學生嘗試運用新知識解決新問題,即在教學過程中,讓學生的思維由問題開始,通過猜想的得出、猜想的探究、定理的推導等環(huán)節(jié)逐步得到深化。同時,由于學生目前還沒有學習習近平面向量,因此,對于正弦定理的證明方法——向量法,本節(jié)課沒有涉及到。上課一開始,我先提出問題:工人師傅的一個三角形模型壞了,只剩下如圖所示的部分,AB的長為1m,但他不知道AC
點擊復制文檔內容
研究報告相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1