freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

正弦定理教案[定稿]-wenkub

2024-10-06 07 本頁面
 

【正文】 (2)對于解三角形中的復(fù)雜運(yùn)算可使用計(jì)算器.【例2】在△ABC中,已知A=20cm,B=28cm,A=40176。+176。,B=176。Cos(A90176。=j,過點(diǎn)A作與垂直的單位向量j,則j與的夾角為A90176。+C,j與的夾角為90176。C.由向量的加法原則可得 ,為了與圖中有關(guān)角的三角函數(shù)建立聯(lián)系,我們在上面向量等式的兩邊同取與向量j的數(shù)量積運(yùn)算,得到 由分配律可得. ∴|j|Cos90176。θ)進(jìn)行轉(zhuǎn)化.師這一轉(zhuǎn)化產(chǎn)生了新角90176。第一篇:正弦定理教案[定稿] 正弦定理和余弦定理 正弦定理從容說課本章內(nèi)容是處理三角形中的邊角關(guān)系,與初中學(xué)習(xí)的三角形的邊與角的基本關(guān)系有密切的聯(lián)系,與已知三角形的邊和角相等判定三角形全等的知識也有著密切的聯(lián)系.教科書在引入正弦定理內(nèi)容時(shí),讓學(xué)生從已有的幾何知識出發(fā),提出探究性問題“在任意三角形中有大邊對大角,、角的關(guān)系準(zhǔn)確量化的表示呢?”在引入余弦定理內(nèi)容時(shí),提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個(gè)三角形是大小、也就是研究如何從已知的兩邊和它們的夾角計(jì)算出三角形的另一邊和兩個(gè)角的問題”.這樣,用聯(lián)系的觀點(diǎn),從新的角度看過去的問題,使學(xué)生對于過去的知識有了新的認(rèn)識,同時(shí)使新知識建立在已有知識的堅(jiān)實(shí)基礎(chǔ)上,形成良好的知識結(jié)構(gòu).; .; .教具準(zhǔn)備直角三角板一個(gè)三維目標(biāo)一、知識與技能 ,掌握正弦定理的內(nèi)容及其證明方法; .二、過程與方法 ,共同探究在任意三角形中,邊與其對角的關(guān)系; 、推導(dǎo)、比較,由特殊到一般歸納出正弦定理; .三、情感態(tài)度與價(jià)值觀 ; ,通過三角函數(shù)、正弦定理、向量的數(shù)量積等知識間的聯(lián)系來體現(xiàn)事物之間的普遍聯(lián)系與辯證統(tǒng)一.教學(xué)過程導(dǎo)入新課 師如右圖,固定△ABC的邊CB及∠B,使邊AC繞著頂點(diǎn)C轉(zhuǎn)動(dòng).師思考:∠C的大小與它的對邊AB的長度之間有怎樣的數(shù)量關(guān)系?生顯然,邊AB的長度隨著其對角∠C的大小的增大而增大.師能否用一個(gè)等式把這種關(guān)系精確地表示出來? 師在初中,我們已學(xué)過如何解直角三角形,下面就首先來探討直角三角形中,角與邊的等式關(guān)系.如右圖,在Rt△ABC中,設(shè)BC =A,AC =B,AB =C,根據(jù)銳角三角函數(shù)中正弦函數(shù)的定義,有=sinA,=sinB,又sinC=1=,,.推進(jìn)新課 [合作探究]師那么對于任意的三角形,以上關(guān)系式是否仍然成立?(由學(xué)生討論、分析)生可分為銳角三角形和鈍角三角形兩種情況: 如右圖,當(dāng)△ABC是銳角三角形時(shí),設(shè)邊AB上的高是CD,根據(jù)任意角三角函數(shù)的定義,有CD=AsinB=BsinA,則,同理,.(當(dāng)△ABC是鈍角三角形時(shí),解法類似銳角三角形的情況,由學(xué)生自己完成)正弦定理:在一個(gè)三角形中,各邊和它所對角的正弦的比相等,即.師是否可以用其他方法證明這一等式?生可以作△ABC的外接圓,在△ABC中,令BC=A,AC=B,AB=C,根據(jù)直徑所對的圓周角是直角以及同弧所對的圓周角相等,來證明這一關(guān)系.師很好!這位同學(xué)能充分利用我們以前學(xué)過的知識來解決此問題,△ABC中,已知BC=A,AC=B,AB=C,作△ABC的外接圓,O為圓心,連結(jié)BO并延長交圓于B′,設(shè)BB′= ∠BAB′=90176。θ,這就為輔助向量j的添加提供了線索,為方便進(jìn)一步的運(yùn)算,輔助向量選取了單位向量j,而j垂直于三角形一邊,且與一邊夾角出現(xiàn)了90176。+|j|Cos(90176。+B,可得.(此處應(yīng)強(qiáng)調(diào)學(xué)生注意兩向量夾角是以同起點(diǎn)為前提,防止誤解為j與的夾角為90176。,j與的夾角為90176。,即A), ∴AsinC=CsinA. ∴ 另外,過點(diǎn)C作與垂直的單位向量j,則j與的夾角為90176。,A= cm,解三角形.分析:此題屬于已知兩角和其中一角所對邊的問題,直接應(yīng)用正弦定理可求出邊B,若求邊C,再利用正弦定理即可.解:根據(jù)三角形內(nèi)角和定理, C=180176。)=176。解三角形(角度精確到1176。或B≈116176。(40176。時(shí), C=180176。)=24176。(2)A=28,B=20,A=45176。A2≈115176。(30176。時(shí),C2=180176。)=35176。+150176。(45176。,B2≈139176。(41176。已知兩邊和其中一邊的對角解三角形.布置作業(yè)(一) 第2題.(二)預(yù)習(xí)內(nèi)容:課本P5~P 8余弦定理 [預(yù)習(xí)提綱](1)復(fù)習(xí)余弦定理證明中所涉及的有關(guān)向量知識.(2)余弦定理如何與向量產(chǎn)生聯(lián)系.(3)利用余弦定理能解決哪些有關(guān)三角形問題.板書設(shè)計(jì)正弦定理 : : ,能夠解決兩類問題:(1)平面幾何法(1)已知兩角和一邊(2)向量法(2)已知兩邊和其中一邊的對角第二篇:《正弦定理》教案《正弦定理》教學(xué)設(shè)計(jì)一、教學(xué)目標(biāo)分析知識與技能:通過對銳角三角形中邊與角的關(guān)系的探索,發(fā)現(xiàn)正弦定理;掌握正弦定理的內(nèi)容及其證明方法;能利用正弦定理解三角形以及利用正弦定理解決簡單的實(shí)際問題。培養(yǎng)學(xué)生處理解三角形問題的運(yùn)算能力和探索數(shù)學(xué)規(guī)律的推理能力,并培養(yǎng)學(xué)生堅(jiān)忍不拔的意志、實(shí)事求是的科學(xué)態(tài)度和樂于探索、勇于創(chuàng)新的精神。在教法上,根據(jù)教材的內(nèi)容和編排的特點(diǎn),為更有效的突出重點(diǎn),突破難點(diǎn),教學(xué)中采用探究式課堂教學(xué)模式,首先從學(xué)生熟悉的銳角三角形情形入手,設(shè)計(jì)恰當(dāng)?shù)膯栴}情境,將新知識與學(xué)生已有的知識建立起密切的聯(lián)系,通過學(xué)生自己的親身體驗(yàn),使學(xué)生經(jīng)歷正弦定理的發(fā)現(xiàn)過程,激發(fā)學(xué)生的求知欲,調(diào)動(dòng)學(xué)生主動(dòng)參與的積極性,引導(dǎo)學(xué)生嘗試運(yùn)用新知識解決新問題,即在教學(xué)過程中,讓學(xué)生的思維由問題開始,通過猜想的得出、猜想的探究、定理的推導(dǎo)等環(huán)節(jié)逐步得到深化。同時(shí),由于學(xué)生目前還沒有學(xué)習(xí)習(xí)近平面向量,因此,對于正弦定理的證明方法——向量法,本節(jié)課沒有涉及到。上課一開始,我先提出問題:工人師傅的一個(gè)三角形模型壞了,只剩下如圖所示的部分,AB的長為1m,但他不知道AC
點(diǎn)擊復(fù)制文檔內(nèi)容
研究報(bào)告相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1