freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

正弦定理的說課稿-wenkub

2024-11-15 05 本頁面
 

【正文】 cm,b=39cm,C=115176。c=10cm(2)A=60176。完了把時間交給學生。在△ABC中,已知a=20cm,b=28cm,A=40176。9cm。在△ABC中,已知A=32176。2.正弦定理的內(nèi)容,討論可以解決哪幾類有關三角形的問題。(三)邏輯推理,證明猜想1.強調(diào)將猜想轉(zhuǎn)化為定理,需要嚴格的理論證明。AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學生幫助別人的熱情和學習的興趣,從而進入今天的學習課題。學法:指導學生掌握“觀察——猜想——證明——應用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應用于對任意三角形性質(zhì)的探究。(根據(jù)我的教學內(nèi)容與學情分析以及教學重難點,我制定了如下幾點教學目標)教學目標分析:知識目標:理解并掌握正弦定理的證明,運用正弦定理解三角形。因此,正弦定理的知識非常重要。在強調(diào)研究性學習方法,注重學生的主體地位,調(diào)動學生積極性,使數(shù)學教學成為數(shù)學活動的教學。2.它表述了三角形的邊與對角的正弦值的關系。,c=20cm △ABC中,已知下列條件,解三角形.(1)a=20cm,b=11cm,B=30176。(六)課堂練習,提高鞏固△ABC中,已知下列條件,解三角形.(1)A=45176。2. △ABC中,已知a=20cm,b=28cm,A=40176。(五)講解例題,鞏固定理1.例1。4.思考是否還有其他的方法來證明正弦定理,布置課后練習,提示,做三角形的外接圓構造直角三角形,或用坐標法來證明(四)歸納總結,簡單應用1.讓學生用文字敘述正弦定理,引導學生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學美的享受。3.讓學生總結實驗結果,得出猜想: 在三角形中,角與所對的邊滿足關系這為下一步證明樹立信心,不斷的使學生對結論的認識從感性逐步上升到理性。,∠B=53176。另外,抓知識選擇的切入點,從學生原有的認知水平和所需的知識特點入手,教師在學生主體下給以適當?shù)奶崾竞椭笇А=虒W重點:正弦定理的內(nèi)容,正弦定理的證明及基本應用。因此,正弦定理和余弦定理的知識非常重要。第一篇:正弦定理的說課稿正弦定理的說課稿大家好,今天我向大家說課的題目是《正弦定理》。根據(jù)上述教材內(nèi)容分析,考慮到學生已有的認知結構心理特征及原有知識水平,制定如下教學目標:認知目標:在創(chuàng)設的問題情境中,引導學生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡單運用正弦定理與三角形的內(nèi)角和定理解斜三角形的兩類問題。教學難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數(shù)。突破難點的方法:抓住學生的能力線聯(lián)系方法與技能使學生較易證明正弦定理,另外通過例題和練習來突破難點 三 學法:指導學生掌握“觀察——猜想——證明——應用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應用于對任意三角形性質(zhì)的探究。,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學生幫助別人的熱情和學習的興趣,從而進入今天的學習課題。(三)邏輯推理,證明猜想1.強調(diào)將猜想轉(zhuǎn)化為定理,需要嚴格的理論證明。2.正弦定理的內(nèi)容,討論可以解決哪幾類有關三角形的問題。在△ABC中,已知A=32176。,,使學生明確,利用正弦定理求角有兩種可能。,C=30176。(2)c=54cm,b=39cm,C=115176。3.定理證明分別從直角、銳角、鈍角出發(fā),運用分類討論的思想。)(八)任務后延,自主探究如果已知一個三角形的兩邊及其夾角,要求第三邊,怎么辦?發(fā)現(xiàn)正弦定理不適用了,那么自然過渡到下一節(jié)內(nèi)容,余弦定理。學情分析:作為高一學生,同學們已經(jīng)掌握了基本的三角函數(shù),特別是在一些特殊三角形中,而學生們在解決任意三角形的邊與角問題,就比較困難。能力目標:探索正弦定理的證明過程,用歸納法得出結論。讓學生在問題情景中學習,觀察,類比,思考,探究,動手嘗試相結合,增強學生由特殊到一般的數(shù)學思維能力,鍥而不舍的求學精神。(二)探尋特例,提出猜想1.激發(fā)學生思維,從自身熟悉的特例(直角三角形)入手進行研究,發(fā)現(xiàn)正弦定理。2.鼓勵學生通過作高轉(zhuǎn)化為熟悉的直角三角形進行證明。3.運用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。B=81。解三角形。解三角形。(六)課堂練習,提高鞏固在△ABC中,已知下列條件,解三角形。B=45176。學生板演,老師巡視,及時發(fā)現(xiàn)問題,并解答。(從實際問題出發(fā),通過猜想、實驗、歸納等思維方法,最后得到了推導出正弦定理。布置作業(yè),預習下一節(jié)內(nèi)容。從某種意義講,這部分內(nèi)容是用代數(shù)方法解決幾何問題的典型內(nèi)容之一。但是,大多數(shù)學生對數(shù)學的興趣較高,比較喜歡數(shù)學,尤其是象本節(jié)課這樣與實際生活聯(lián)系比較緊密的內(nèi)容,相信學生能夠積極配合,有比較不錯的表現(xiàn)。同時,通過實際問題的探討、解決,讓學生體驗學習成就感,增強數(shù)學學習興趣和主動性,鍛煉探究精神。四、教學方法與手段為了更好的達成上面的教學目標,促進學習方式的轉(zhuǎn)變,本節(jié)課我準備采用”問題教學法,即由教師以問題為主線組織教學,利用多媒體和實物投影儀等教學手段來激發(fā)興趣、突出重點,突破難點,提高課堂效率,并引導學生采取自主探究與相互合作相結合的學習方式參與到問題解決的過程中去,從中體驗成功與失敗,從而逐步建立完善的認知結構。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把這個直角三角形中的所有的邊和角用一個表達式表示出來嗎?引導啟發(fā)學生發(fā)現(xiàn)特殊情形下的正弦定理(三)類比歸納,嚴格證明問題4:本題屬于初中問題,而且比較簡單,不夠刺激,現(xiàn)在如果我為難為難你,讓你也當一回老師,如果有個學生把條件中的Rt⊿ABC不小心寫成了銳角⊿ABC,其它沒有變,你說這個結論還成立嗎?此時放手讓學生自己完成,如果感覺自己解決有困難,學生也可以前后桌或同桌結組研究,鼓勵學生用不同的方法證明這個結論,在巡視的過程中讓不同方法的學生上黑板展示,如果沒有用向量的學生,教師引導提示學生能否用向量完成證明。同時,考慮到有部分同學基礎較差,考個人或小組可能無法完成探究任務,教師在學生動手的同時,通過巡查,讓提前證明出結論的同學上黑板完成,這樣做一方面肯定了先完成的同學的先進性,鍛煉了上黑板同學的解題過程的書寫規(guī)范性,同時,也讓從無從下手的同學有個參考,不至于閑呆著浪費時間。不管怎樣,我們說在10以前,人們就發(fā)現(xiàn)了這個充滿著數(shù)學美的結論,不能不說也是人類數(shù)學史上的一個奇跡。(四)強化理解,簡單應用下面請大家看我們的教材23頁到例題1上邊,并自學解三角形定義。強化練習讓全體同學限時完成教材4頁練習第一題,找兩位同學上黑板。(六)布置作業(yè),鞏固提高新課標指出:高中教育屬于基礎教育,具有基礎性,且具有多樣性與選擇性,使不同的學生在數(shù)學上得到不同的發(fā)展?!墩叶ɡ怼肥侨私藺版必修5第一章第一節(jié)的內(nèi)容,其主要內(nèi)容是正弦定理及其應用。二、說學情合理把握學情是上好一堂課的基礎,下面我來談談學生的實際情況。(二)過程與方法通過正弦定理的推導過程,提高分析問題、解決問題的能力。那么根據(jù)授課內(nèi)容可以確定本節(jié)課的教學重點為:正弦定理。六、說教學過程在這節(jié)課的教學過程中,我注重突出重點,條理清晰,緊湊合理。在學生回顧之后,再提問:能否得到這個邊、角關系準確量化的表示?引出本節(jié)課學習的內(nèi)容——正弦定理。在介紹完正弦定理后,接下來介紹正弦定理的應用。并且在整個過程中,講授法、引導法、合作探究等多種教學方法的使用,不但讓學生學會知識,也培養(yǎng)學生的學習能力。正弦定理是初中解直角三角形的延伸,是揭示三角形邊、角之間數(shù)量關系的重要公式,本節(jié)內(nèi)容同時又是學生學習解三角形,幾何計算等后續(xù)知識的基礎,而且在物理學等其它學科、工業(yè)生產(chǎn)以及日常生活等常常涉及解三角形的問題。(3)情感目標:通過設立問題情境,激發(fā)學生的學習動機和好奇心理,使其主動參與雙邊交流活動。根據(jù)本節(jié)課內(nèi)容和學生認知水平,我主要采用啟導法、感性體驗法、多媒體輔助教學。為了提高課堂效率,便于學生動手練習,我把本節(jié)課的例題、課堂練習制作成一張習題紙,課前發(fā)給學生。希望對學生的思維品質(zhì)的培養(yǎng)﹑數(shù)學思想的建立﹑心理品質(zhì)的優(yōu)化起到良好的`作用.設計意圖:我的板書設計的指導原則:簡明直觀,重點突出。一、教材分析本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學習的三角形的邊和角的基本關系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當中也時??家恍┙獯痤}。情感目標:面向全體學生,創(chuàng)造平等的教學氛圍,通過學生之間、師生之間的交流、合作和評價,調(diào)動學生的主動性和積極性,激發(fā)學生學習的興趣。三、學法指導學生掌握“觀察——猜想——證明——應用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應用于對任意三角形性質(zhì)的探究。,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學生幫助別人的熱情和學習的興趣,從而進入今天的學習課題。,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結合的數(shù)學思想。(四)講解例題(8分鐘). 在△ABC中,已知A=32176。,解三角形.例2較難,使學生明確,利用正弦定理求角有兩種可能。,C=30176。 (2)c=54cm,b=39cm,C=115176。,將幾何問題轉(zhuǎn)化為代數(shù)問題。正弦定理說課稿6大家好,今天我向大家說課的題目是《正弦定理》。根據(jù)上述教材內(nèi)容分析,考慮到學生已有的認知結構心理特征及原有知識水平,制定如下教學目標:認知目標:在創(chuàng)設的問題情境中,引導學生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡單運用正弦定理與三角形的內(nèi)角和定理解斜三角形的兩類問題。教學難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數(shù)。突破難點的方法:抓住學生的能力線聯(lián)系方法與技能使學生較易證明正弦定理,另外通過例題和練習來突破難點三學法指導學生掌握“觀察——猜想——證明——應用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應用于對任意三角形性質(zhì)的探究。,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學生幫助別人的熱情和學習的興趣,從而進入今天的學習課題。(三)邏輯推理,證明猜想1.強調(diào)將猜想轉(zhuǎn)化為定理,需要嚴格的理論證明。2.正弦定理的內(nèi)容,討論可以解決哪幾類有關三角形的問題。在△ABC中,已知A=32176。,解三角形.例2較難,使學生明確,利用正弦定理求角有兩種可能。,C=30176。(2)
點擊復制文檔內(nèi)容
化學相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1