freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

xx高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)-wenkub

2022-11-28 10:52:05 本頁面
 

【正文】 論的反面出發(fā)(假設(shè)),引出 (與已知、公理、定理? )矛盾,從而否定假設(shè)證明原命題成立,這樣的證明方法叫做反證法。 (1)交換原命題的條件和結(jié)論,所得的命題是逆命題; (2)同時(shí)否定原命題的條件和結(jié)論,所得的命題是否命題; (3)交換原命題的條件和結(jié)論,并且同時(shí)否定,所得的命題是逆否命題. 四種命題之間的相互關(guān)系: 一個(gè)命題的真假與其他三個(gè)命題的真假有如下 三條關(guān)系: (原命題 ? 逆否命題 ) ①、原命題為真,它的逆命題不一定為真。0)()(0)( )( xg xgxfxg xfxgxfxg xf ( 1)公式法: cbax ?? ,與 )0( ??? ccbax 型的不等式的解法 . ( 2)定義法:用“零點(diǎn)分區(qū)間法”分類討論 . ( 3)幾何法:根據(jù)絕對(duì)值的幾何意義用數(shù)形結(jié)合思想方法解題 . 一元二次方程 ax2+bx+c=0(a≠ 0) ( 1)根的“零分布”:根據(jù)判別式和韋達(dá)定理分析列式解 之 . ( 2)根的“非零分布”:作二次函數(shù)圖象,用數(shù)形結(jié)合思想分析列式解之 . ( 三)簡易邏輯 命題的定義:可以判斷真假的語句叫做命題。 , .UA A A A U A UA B B C A C A B A A B B A B A A B B? ? ? ? ?? ? ? ? ? ? ? ?C ( 2) 等價(jià)關(guān)系: UA B A B A A B B A B U? ? ? ? ? ? ?C ( 3) 集合的運(yùn)算律: 交換律: .。01. 集集 合合 與與 簡簡 易易 邏邏 輯輯 知知 識(shí)識(shí) 要要 點(diǎn)點(diǎn) 一、知識(shí)結(jié)構(gòu) : 本章知識(shí)主要分為集合、簡單不等 式的解法(集合化簡)、簡易邏輯三部分: 二、知識(shí)回顧: (一) 集合 1. 基本概念:集合、元素;有限集、無限集;空集、全集;符號(hào)的使用 . 2. 集合的表示法:列舉法、描述法、圖形表示法 . 集合元素的特征:確定性、互異性、無序性 . 集合的性質(zhì): ① 任何一個(gè)集合是它本身的子集,記為 AA? ; ② 空集是任何集合的子集,記為 A?? ; ③ 空集是任何非空集合的真子集; 如果 BA? ,同時(shí) AB? ,那么 A = B. 如果 CACBBA ??? ,那么, . [注 ]: ① Z= {整數(shù) }(√) Z ={全體整 數(shù) } (179。) ② 已知集合 S 中 A 的補(bǔ)集是一個(gè)有限集,則集合 A也是有限集 .(179。 ABBAABBA ???? ?? 結(jié)合律 : )()()。 邏輯聯(lián)結(jié)詞、簡單命題與復(fù)合命題: “或”、“且”、“非”這些詞叫做邏輯聯(lián)結(jié)詞;不含有邏輯聯(lián)結(jié)詞的命題是簡單命題;由簡單命題和邏輯聯(lián)結(jié)詞“或”、“且”、“非”構(gòu)成的命題是復(fù)合命題。 ②、原命題為真,它的否命題不一定為真。 高中數(shù)學(xué)第 二 章 函數(shù) 考試內(nèi)容: 映射、函數(shù)、函數(shù)的單調(diào)性、 奇偶性. 反函數(shù).互為反函數(shù)的函數(shù)圖像間的關(guān)系. 指數(shù)概念的擴(kuò)充.有理指數(shù)冪的運(yùn)算性質(zhì).指數(shù)函數(shù). 對(duì)數(shù).對(duì)數(shù)的運(yùn)算性質(zhì).對(duì)數(shù)函數(shù). 函數(shù)的應(yīng)用. 考試要求: ( 1)了解映射的概念,理解函數(shù)的概念. ( 2)了解函數(shù)單調(diào) 性、奇偶性的概念,掌握判斷一些簡單函數(shù)的單調(diào)性、奇偶性的方法. ( 3)了解反函數(shù)的概念及互為反函數(shù)的函數(shù)圖像間的關(guān)系,會(huì)求一些簡單函數(shù)的反函數(shù). ( 4)理解分?jǐn)?shù)指數(shù)冪的概念,掌握有理指數(shù)冪的運(yùn)算性質(zhì),掌握指數(shù)函數(shù)的概念、圖像 和性質(zhì). ( 5)理解對(duì)數(shù)的概念,掌握對(duì)數(shù)的運(yùn)算性質(zhì);掌握對(duì)數(shù)函數(shù)的概念、圖像和性質(zhì). ( 6)能夠運(yùn)用函數(shù)的性質(zhì)、指 數(shù)函數(shù)和對(duì)數(shù)函數(shù)的性質(zhì)解決某些簡單的實(shí)際問題. 167。反之亦真,因此,也可以利用函數(shù)圖象的對(duì)稱性去判斷函數(shù)的奇偶性。x0時(shí), 0y1 (4)x0時(shí), 0y1。推廣: mnmnn aaa ?? ??2 性質(zhì) 1 若 m+n=p+q 則 qpnm aaaa ??? 若 m+n=p+q,則 qpnm aaaa ? 。 nnnnn sssss 232 , ?? 成等比數(shù)列 。 3. 在等差數(shù)列{ na }中 ,有關(guān) Sn 的最值問題: (1)當(dāng) 1a 0,d0時(shí),滿足??? ??? 001mmaa 的項(xiàng)數(shù) m使得 ms 取最大值 . (2)當(dāng) 1a 0,d0 時(shí),滿足??? ??? 001mmaa 的項(xiàng)數(shù) m 使得 ms 取最小值。 :適用于 ? ?nnba 其中 { na }是等差數(shù)列, ??nb 是各項(xiàng)不為 0的等比數(shù)列。)終邊相同的角的集合(角 ? 與角 ? 的終邊重合):? ?Zkk ???? ,360| ??? ? ② 終邊在 x 軸上的角的集合: ? ?Zkk ??? ,180| ??? ③ 終邊在 y 軸上的角的集合: ? ?Zkk ???? ,901 8 0| ???? ④ 終邊在坐標(biāo)軸上的角的集合: ? ?Zkk ??? ,90| ??? yx▲S I N \ COS 三角函數(shù)值大小關(guān)系圖s i n xc o s x1 、 2 、 3 、 4 表示第一、二、三、四象限一半所在區(qū)域123412 34s i n xs i n x s i n xc o s xc o s xc o s x 新課標(biāo)第一網(wǎng)不用注冊(cè),免費(fèi)下載! 第 18 頁 共 76 頁 ⑤ 終邊在 y=x 軸上的角的集合: ? ?Zkk ???? ,451 8 0| ???? ⑥ 終邊在 xy ?? 軸上的角的集合: ? ?Zkk ???? ,451 8 0| ???? ⑦ 若角 ? 與角 ? 的終邊關(guān)于 x 軸對(duì)稱,則角 ? 與角 ? 的關(guān)系: ?? ?? k?360 ⑧ 若角 ? 與角 ? 的終邊關(guān)于 y 軸對(duì)稱,則角 ? 與角 ? 的關(guān)系: ?? ??? ?? 180360 k ⑨ 若角 ? 與角 ? 的終邊在一條直線上,則角 ? 與角 ? 的關(guān)系: ?? ?? k?180 ⑩ 角 ? 與角 ? 的終邊互相垂直,則角 ? 與角 ? 的關(guān)系: ?? 90360 ??? ?? k 2. 角度與弧度的互換關(guān)系: 360176。=57176。 18ˊ. 1176。 cs c x =1 tan x = xxc o ssin s in 2 x + co s 2 x =1co s x 178。 ,1tan ??? )(2 Zkk ???? ????. ⑥ xy cos? 與 ?????? ??? ?? kxy 22sin是同一函數(shù) ,而 )( ?? ?? xy 是偶函數(shù),則 )c os ()21s i n()( xkxxy ?????? ??????? . ⑦ 函數(shù) xy tan? 在 R 上為增函數(shù) .( ) [只能在某個(gè)單調(diào)區(qū)間單調(diào)遞增 . 若在整個(gè)定義域,xy tan? 為增函數(shù),同樣也是錯(cuò)誤的 ]. ⑧ 定義域關(guān)于原點(diǎn)對(duì)稱是 )(xf 具有奇偶性的 必要不充分條件 .(奇偶性的兩個(gè)條件:一是定義域關(guān)于 原點(diǎn)對(duì)稱(奇偶都要),二是滿足奇偶性條件,偶函數(shù): )()( xfxf ?? ,奇函數(shù):)()( xfxf ??? ) 奇偶性的單調(diào)性:奇同偶反 . 例如: xy tan? 是奇函數(shù), )31tan( ??? xy是非奇非偶 .(定義域不關(guān)于原點(diǎn)對(duì)稱) 奇函數(shù)特有性質(zhì):若 x?0 的定義域,則 )(xf 一定有 0)0( ?f .( x?0 的定義域,則無此性質(zhì)) ⑨ xy sin? 不是周期函數(shù); xy sin? 為周期函數(shù)( ??T ); xy cos? 是周期函數(shù)(如圖); xy cos? 為周期函數(shù)( ??T ); 212cos ?? xy的周期為 ? (如圖),并非所有周期函數(shù)都有最小正周期,例如: Rkkxfxfy ????? ),(5)( . ⑩abbabay ??????? ????? c os)s i n (s i nc os 22 有 yba ?? 22 . 1三角函數(shù)圖象的作法: 1)、幾何法: ▲ yxy= c os |x |圖象▲1 /2yxy= |cos 2 x+ 1 /2 |圖象 新課標(biāo)第一網(wǎng)不用注冊(cè),免費(fèi)下載! 第 22 頁 共 76 頁 2)、描點(diǎn)法及其特例 ——五點(diǎn)作圖法(正、余弦曲線),三點(diǎn)二線作圖法(正 、余切曲線) . 3)、利用圖象變換作三角函數(shù)圖象. 三角函數(shù)的圖象變換有振幅變換、周期變換和相位變換等. 函數(shù) y= Asin(ω x+ φ)的 振幅 |A|,周期 2||T ???,頻率 1 | |2f T ????,相位 。 ? 0時(shí) , aa?與 異向 。 反三角函數(shù): 函數(shù) y= sinx,?????? ???????? 22 ??,x的反函數(shù)叫做 反正弦函數(shù) ,記作 y= arcsinx,它的定義域是[- 1,1],值域是 ?????? 22??,-. 函數(shù) y= cosx,( x∈[ 0, π ])的反應(yīng)函數(shù)叫做 反余弦函數(shù) ,記作 y= arccosx,它的定義域是[- 1, 1],值域是[ 0, π ]. 函數(shù) y= tanx,?????? ???????? 22 ??,x的反函數(shù)叫做 反正切函數(shù) ,記作 y= arctanx,它的定義域是(-∞,+∞),值域是 ??????? 22??,. 函數(shù) y= ctgx,[ x∈( 0, π )]的反函數(shù)叫做 反余切函數(shù) ,記作 y= arcctgx,它的定義域是(-∞,+∞),值域是( 0, π ). II. 競賽知識(shí)要點(diǎn) 一、反三角函數(shù) . 1. 反三角函數(shù): ? 反正弦函數(shù) xy arcsin? 是奇函數(shù),故 xx arcsin)arcsin ( ??? , ? ?1,1??x (一定要注明定義域,若 ? ?????? ,x ,沒有 x 與 y 一一對(duì)應(yīng),故 xy sin? 無反函數(shù)) 新課標(biāo)第一網(wǎng)不用注冊(cè),免費(fèi)下載! 第 23 頁 共 76 頁 注: xx ?)sin(arcsin , ? ?1,1??x , ???????? 2,2arcsin ??x. ? 反余弦函數(shù) xy arccos? 非奇非偶,但有 ?? kxx 2)a r c c o s ()a r c c o s ( ???? , ? ?1,1??x . 注: ① xx ?)cos(arccos , ? ?1,1??x , ? ??,0arccos ?x . ② xy cos? 是偶函數(shù), xy arccos? 非奇非偶,而 xy sin? 和 xy arcsin? 為奇函數(shù) . ? 反正切函數(shù): xy arctan? ,定義域 ),( ???? ,值域(2,2???), xy arctan? 是奇函數(shù), xx arctan)arctan( ??? , ?x ),( ???? . 注: xx ?)tan(arctan , ?x ),( ???? . ? 反余切函數(shù): xarcy cot? ,定義域 ),( ???? ,值域(2,2???), xarcy cot? 是非奇非偶 . ?? kxa r cxa r c 2)c o t()c o t( ???? , ?x ),( ???? . 注: ① xxarc ?)cotcot( , ?x ),( ???? . ② xy arcsin? 與 )1arcsin( xy ?? 互為奇函數(shù), xy arctan? 同理為奇而 xy arccos? 與 xarcy cot?非奇非偶但滿足 ]1,1[,2)c o t (c o t]1,1[,2a r c c o s)a r c c o s ( ???????????? xkxa r cxa r cxkxx ????. ? 正弦、余弦、正切、余切函數(shù)的解集: a 的取值范圍 解集 a 的取值范圍 解集 ① ax?sin 的解集 ② ax?cos 的解集 a > 1 ? a > 1 ? a =1 ? ?Zkakxx ??? ,a rc s in2| ? a =1 ? ?Zkakxx ??? ,a rc c o s2| ? a < 1 ? ?? ?Zkakxx k ???? ,a r c s in1| ? a < 1 ? ?Zkakxx ??? ,a rc c o s| ? ③ ax?tan 的解集: ? ?Zkakxx ??? ,a r c ta n| ? ③ ax?cot 的解集: ? ?Zkakxx ??? ,c o ta r c| ? 二、三角恒等式 . 組一 組二 ?? ??nk
點(diǎn)擊復(fù)制文檔內(nèi)容
試題試卷相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1