freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)-wenkub

2023-04-19 03:02:05 本頁面
 

【正文】 正確答案,亦可將供選擇的答案代入條件中去驗(yàn)證,找出正確答案,此法稱為驗(yàn)證法(也稱代入法)。填空題是標(biāo)準(zhǔn)化考試的重要題型之一,它同選擇題一樣具有考查目標(biāo)明確,知識(shí)復(fù)蓋面廣,評(píng)卷準(zhǔn)確迅速,有利于考查學(xué)生的分析判斷能力和計(jì)算能力等優(yōu)點(diǎn),不同的是填空題未給出答案,可以防止學(xué)生猜估答案的情況。將圖形從相等靜止條件下的研究和運(yùn)動(dòng)中的研究結(jié)合起來,有利于對(duì)圖形本質(zhì)的認(rèn)識(shí)。所謂變換是一個(gè)集合的任一元素到同一集合的元素的一個(gè)一一映射。用歸納法或分析法證明平面幾何題,其困難在添置輔助線。推理必須嚴(yán)謹(jǐn)。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。它是中學(xué)數(shù)學(xué)中常用的方法之一。換元法 換元法是數(shù)學(xué)中一個(gè)非常重要而且應(yīng)用十分廣泛的解題方法。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡(jiǎn)根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。中考 數(shù) 學(xué) 知 識(shí) 點(diǎn) 總 結(jié)中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)一、常用數(shù)學(xué)公式公式分類 公式表達(dá)式乘法與因式分解 a2b2=(a+b)(ab)a3+b3=(a+b)(a2ab+b2)a3b3=(ab(a2+ab+b2) 三角不等式 |a+b|≤|a|+|b||ab|≤|a|+|b||a|≤b=b≤a≤b|ab|≥|a||b| |a|≤a≤|a|一元二次方程的解 b+√(b24ac)/2a b√(b24ac)/2a 根與系數(shù)的關(guān)系 X1+X2=b/a X1*X2=c/a 注:韋達(dá)定理判別式b24ac=0 注:方程有兩個(gè)相等的實(shí)根b24ac0 注:方程有兩個(gè)不等的實(shí)根b24ac0 注:方程沒有實(shí)根,有共軛復(fù)數(shù)根某些數(shù)列前n項(xiàng)和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理 a/sinA=b/sinB=c/sinC=2R注:其中 R 表示三角形的外接圓半徑 余弦定理 b2=a2+c22accosB注:角B是邊a和邊c的夾角二、基本方法配方法所謂配方,就是把一個(gè)解析式利用恒等變形的方法,把其中的某些項(xiàng)配成一個(gè)或幾個(gè)多項(xiàng)式正整數(shù)次冪的和形式。因式分解法 因式分解,就是把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積的形式。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個(gè)比較復(fù)雜的數(shù)學(xué)式子中,用新的變?cè)ゴ嬖降囊粋€(gè)部分或改造原來的式子,使它簡(jiǎn)化,使問題易于解決。構(gòu)造法在解題時(shí),我們常常會(huì)采用這樣的方法,通過對(duì)條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個(gè)圖形、一個(gè)方程(組)、一個(gè)等式、一個(gè)函數(shù)、一個(gè)等價(jià)命題等,架起一座連接條件和結(jié)論的橋梁,從而使問題得以解決,這種解題的數(shù)學(xué)方法,我們稱為構(gòu)造法。用反證法證明一個(gè)命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論。導(dǎo)出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。面積法的特點(diǎn)是把已知和未知各量用面積公式聯(lián)系起來,通過運(yùn)算達(dá)到求證的結(jié)果。中學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。幾何變換包括:(1)平移;(2)旋轉(zhuǎn);(3)對(duì)稱。要想迅速、正確地解選擇題、填空題,除了具有準(zhǔn)確的計(jì)算、嚴(yán)密的推理外,還要有解選擇題、填空題的方法與技巧。當(dāng)遇到定量命題時(shí),常用此法。(5)圖解法:借助于符合題設(shè)條件的圖形或圖象的性質(zhì)、特點(diǎn)來判斷,作出正確的選擇稱為圖解法。②任何一個(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來表示。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。有理數(shù)的運(yùn)算:加法:①同號(hào)相加,取相同的符號(hào),把絕對(duì)值相加。乘法:①兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),絕對(duì)值相乘。②0不能作除數(shù)。②如果一個(gè)數(shù)X的平方等于A,那么這個(gè)數(shù)X就叫做A的平方根。②正數(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。③每一個(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來表示。③在合并同類項(xiàng)時(shí),我們把同類項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變。整式運(yùn)算:加減運(yùn)算時(shí),如果遇到括號(hào)先去括號(hào),再合并同類項(xiàng)。③多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另外一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。方法:提公因式法、運(yùn)用公式法、分組分解法、十字相乘法。除法:除以一個(gè)分式等于乘以這個(gè)分式的倒數(shù)。②使方程的分母為0的解稱為原方程的增根。二元一次方程:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程。解二元一次方程組的方法:代入消元法/加減消元法。在解一元二次方程的時(shí)候也一樣,利用這點(diǎn),把方程化為幾個(gè)乘積的形式去解(3)公式法這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={b+√[b24ac)]}/2a,X2={b√[b24ac)]}/2a3)解一元二次方程的步驟:(1)配方法的步驟:先把常數(shù)項(xiàng)移到方程的右邊,再把二次項(xiàng)的系數(shù)化為1,再同時(shí)加上1次項(xiàng)的系數(shù)的一半的平方,最后配成完全平方公式(2)分解因式法的步驟:把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式(3)公式法就把一元二次方程的各系數(shù)分別代入,這里二次項(xiàng)的系數(shù)為a,一次項(xiàng)的系數(shù)為b,常數(shù)項(xiàng)的系數(shù)為c4)韋達(dá)定理利用韋達(dá)定理去了解,韋達(dá)定理就是在一元二次方程中,二根之和=b/a,二根之積=c/a也可以表示為x1+x2=b/a,x1x2=c/a。④不等式的兩邊都乘以或除以同一個(gè)負(fù)數(shù),不等號(hào)方向相反。一元一次不等式:左右兩邊都是整式,只含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)是1的不等式叫一元一次不等式。一元一次不等式的符號(hào)方向:在一元一次不等式中,不像等式那樣,等號(hào)是不變的,他是隨
點(diǎn)擊復(fù)制文檔內(nèi)容
數(shù)學(xué)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1