freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

高考數(shù)學知識點總結精華-wenkub

2023-04-07 12:50:09 本頁面
 

【正文】 知識要點(1)向量的基本要素:大小和方向.(2)向量的表示:幾何表示法 ;字母表示:a;坐標表示法 a=xi+yj=(x,y).(3)向量的長度:即向量的大小,記作|a|.(4)特殊的向量:零向量a=O|a|=O.單位向量aO為單位向量|aO|=1.(5)相等的向量:大小相等,方向相同(x1,y1)=(x2,y2)(6) 相反向量:a=bb=aa+b=0(7)平行向量(共線向量):方向相同或相反的向量,∥.運算類型幾何方法坐標方法運算性質向量的加法向量的減法三角形法則,數(shù)乘向量,滿足:2.0時, 同向。ab=1/2ac(1)理解不等式的性質及其證明.數(shù)學探索169。(5)理解不等式│a││b│≤│a+b│≤│a│+│b│.兩條直線的交角.點到直線的距離.數(shù)學探索169。:數(shù)學探索169。(4)了解線性規(guī)劃的意義,并會簡單的應用.數(shù)學探索169。07. 直線和圓的方程 知識要點一、直線方程.1. 直線的傾斜角:一條直線向上的方向與軸正方向所成的最小正角叫做這條直線的傾斜角,其中直線與軸平行或重合時,其傾斜角為0,故直線傾斜角的范圍是.注:①當或時,直線垂直于軸,它的斜率不存在.②每一條直線都存在惟一的傾斜角,除與軸垂直的直線不存在斜率外,其余每一條直線都有惟一的斜率,并且當直線的斜率一定時,其傾斜角也對應確定.2. 直線方程的幾種形式:點斜式、截距式、兩點式、斜切式.特別地,當直線經(jīng)過兩點,即直線在軸,軸上的截距分別為時,直線方程是:.注:若是一直線的方程,則這條直線的方程是,但若則不是這條線.附:直線系:對于直線的斜截式方程,當均為確定的數(shù)值時,它表示一條確定的直線,如果變化時,對應的直線也會變化.①當為定植,變化時,它們表示過定點(0,)的直線束.②當為定值,變化時,它們表示一組平行直線.3. ⑴兩條直線平行:∥兩條直線平行的條件是:①和是兩條不重合的直線. ②在和的斜率都存在的前提下得到的. 因此,應特別注意,抽掉或忽視其中任一個“前提”都會導致結論的錯誤.(一般的結論是:對于兩條直線,它們在軸上的縱截距是,則∥,且或的斜率均不存在,即是平行的必要不充分條件,且)推論:如果兩條直線的傾斜角為則∥. ⑵兩條直線垂直:兩條直線垂直的條件:①設兩條直線和的斜率分別為和,則有這里的前提是的斜率都存在. ②,且的斜率不存在或,且的斜率不存在. (即是垂直的充要條件)4. 直線的交角:⑴直線到的角(方向角);直線到的角,是指直線繞交點依逆時針方向旋轉到與重合時所轉動的角,它的范圍是,當時.⑵兩條相交直線與的夾角:兩條相交直線與的夾角,是指由與相交所成的四個角中最小的正角,又稱為和所成的角,它的取值范圍是,當,則有.5. 過兩直線的交點的直線系方程為參數(shù),不包括在內)6. 點到直線的距離:⑴點到直線的距離公式:設點,直線到的距離為,則有.注:7. 關于點對稱和關于某直線對稱:⑴關于點對稱的兩條直線一定是平行直線,且這個點到兩直線的距離相等.⑵關于某直線對稱的兩條直線性質:若兩條直線平行,則對稱直線也平行,且兩直線到對稱直線距離相等.若兩條直線不平行,則對稱直線必過兩條直線的交點,且對稱直線為兩直線夾角的角平分線.⑶點關于某一條直線對稱,用中點表示兩對稱點,則中點在對稱直線上(方程①),過兩對稱點的直線方程與對稱直線方程垂直(方程②)①②可解得所求對稱點.注:①曲線、直線關于一直線()對稱的解法:y換x,x換y. 例:曲線f(x ,y)=0關于直線y=x–2對稱曲線方程是f(y+2 ,x –2)=0. ②曲線C: f(x ,y)=0關于點(a ,b)的對稱曲線方程是f(a – x, 2b – y)=0. 二、圓的方程.1. ⑴曲線與方程:在直角坐標系中,如果某曲線上的 與一個二元方程的實數(shù)建立了如下關系:①曲線上的點的坐標都是這個方程的解.②以這個方程的解為坐標的點都是曲線上的點.那么這個方程叫做曲線方程;這條曲線叫做方程的曲線(圖形).⑵曲線和方程的關系,實質上是曲線上任一點其坐標與方程的一種關系,曲線上任一點是方程的解;反過來,滿足方程的解所對應的點是曲線上的點.注:如果曲線C的方程是f(x ,y)=0,那么點P0(x0 ,y)線C上的充要條件是f(x0 ,y0)=0 2. 圓的標準方程:以點為圓心,為半徑的圓的標準方程是.特例:圓心在坐標原點,半徑為的圓的方程是:.注:特殊圓的方程:①與軸相切的圓方程 ②與軸相切的圓方程 ③與軸軸都相切的圓方程 3. 圓的一般方程: .當時,方程表示一個圓,其中圓心,半徑.當時,方程表示一個點.當時,方程無圖形(稱虛圓).注:①圓的參數(shù)方程:(為參數(shù)).②方程表示圓的充要條件是:且且.③圓的直徑或方程:已知(用向量可征).4. 點和圓的位置關系:給定點及圓.①在圓內②在圓上③在圓外5. 直線和圓的位置關系: 設圓圓:; 直線:; 圓心到直線的距離.①時,與相切;附:若兩圓相切,則相減為公切線方程.②時,與相交;附:公共弦方程:設有兩個交點,則其公共弦方程為.③時,與相離. 附:若兩圓相離,則相減為圓心的連線的中與線方程. 由代數(shù)特征判斷:方程組用代入法,得關于(或)的一元二次方程,其判別式為,則:與相切;與相交;與相離.注:若兩圓為同心圓則,相減,不表示直線.6. 圓的切線方程:圓的斜率為的切線方程是過圓上一點的切線方程為:.①一般方程若點(x0 ,y0)在圓上,則(x – a)(x0 – a)+(y – b)(y0 – b)=R2. 特別地,過圓上一點的切線方程為.②若點(x0 ,y0)不在圓上,圓心為(a,b)則,聯(lián)立求出切線方程.7. 求切點弦方程:方法是構造圖,則切點弦方程即轉化為公共弦方程. 如圖:ABCD四類共圓. 已知的方程…① 又以ABCD為圓為方程為…② …③,所以BC的方程即③代②,①②相切即為所求. 167。a,─b163。Rx179。.對應邊分別平行的角.異面直線所成的角.異面直線的公垂線.異面直線的距離.數(shù)學探索169。數(shù)學探索169。(3)掌握直線和平面平行的判定定理和性質定理;掌握直線和平面垂直的判定定理和性質定理;掌握斜線在平面上的射影、直線和平面所成的角、直線和平面的距離的概念掌握三垂線定理及其逆定理.數(shù)學探索169。(7)了解棱柱的概念,掌握棱柱的性質,會畫直棱柱的直觀圖.數(shù)學探索169。數(shù)學探索169。.直線和平面垂直的判定.三垂線定理及其逆定理.數(shù)學探索169。.平面的法向量.點到平面的距離.直線和平面所成的角.向量在平面內的射影.數(shù)學探索169。(1)掌握平面的基本性質。(4)了解空間向量的基本定理;.數(shù)學探索169。(8)了解多面體、凸多面體的概念。會畫正棱錐的直觀圖.數(shù)學探索169。09. 立體幾何 知識要點一、 平面.1. 經(jīng)過不在同一條直線上的三點確定一個面.注:兩兩相交且不過同一點的四條直線必在同一平面內.2. 兩個平面可將平面分成3或4部分.(①兩個平面平行,②兩個平面相交)3. 過三條互相平行的直線可以確定1或3個平面.(①三條直線在一個平面內平行,②三條直線不在一個平面內平行)[注]:三條直線可以確定三個平面,三條直線的公共點有0或1個.4. 三個平面最多可把空間分成 8 部分.(X、Y、Z三個方向)二、 空間直線.1. 空間直線位置分三種:相交、平行、異面. 相交直線—共面有反且有一個公共點;平行直線—共面沒有公共點;異面直線—不同在任一平面內[注]:①兩條異面直線在同一平面內射影一定是相交的兩條直線.()(可能兩條直線平行,也可能是點和直線等)②直線在平面外,指的位置關系:平行或相交③若直線a、b異面,a平行于平面,b與的關系是相交、平行、在平面內.④兩條平行線在同一平面內的射影圖形是一條直線或兩條平行線或兩點.⑤在平面內射影是直線的圖形一定是直線.()(射影不一定只有直線,也可以是其他圖形)⑥在同一平面內的射影長相等,則斜線長相等.()(并非是從平面外一點向這個平面所引的垂線段和斜線段)⑦是夾在兩平行平面間的線段,若,則的位置關系為相交或平行或異面.2. 異面直線判定定理:過平面外一點與平面內一點的直線和平面內不經(jīng)過該點的直線是異面直線.(不在任何一個平面內的兩條直線)3. 平行公理:平行于同一條直線的兩條直線互相平行.4. 等角定理:如果一個角的兩邊和另一個角的兩邊分別平行并且方向相同,那么這兩個角相等(如下圖). (二面角的取值范圍) (直線與直線所成角) (斜線與平面成角) (直線與平面所成角)(向量與向量所成角推論:如果兩條相交直線和另兩條相交直線分別平行,那么這兩組直線所成銳角(或直角)相等.5. 兩異面直線的距離:公垂線的長度.空間兩條直線垂直的情況:相交(共面)垂直和異面垂直.是異面直線,則過外一點P,過點P且與都平行平面有一個或沒有,但與距離相等的點在同一平面內. (或在這個做出的平面內不能叫與平行的平面)三、 直線與平面平行、直線與平面垂直.1.
點擊復制文檔內容
規(guī)章制度相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1