【總結(jié)】復(fù)習(xí)1、平面向量基本定理的內(nèi)容是什么?2、什么是平面向量的基底?平面向量的基本定理:向量的基底:不共線的平面向量e1,e2叫做這一平面內(nèi)所有向量的一組基底.如果e1,e2是同一平面內(nèi)的兩個(gè)不共線的向量,那么對于這一平面內(nèi)的任一向量a,有且只有一對實(shí)數(shù)λ1,
2024-11-11 21:10
【總結(jié)】空間向量的坐標(biāo)運(yùn)算(一)儋州市第一中學(xué)數(shù)學(xué)組吳應(yīng)杰空間向量的基本定理:如果三個(gè)向量不共面,那么對空間任一向量,存在一個(gè)唯一的有序?qū)崝?shù)組x、y、z,使得:c,b,a???p?czbyaxp?????cba,,叫做空間的一個(gè)______基底空間任意三個(gè)不共面向
2024-10-17 13:31
【總結(jié)】平面向量的坐標(biāo)運(yùn)算平面向量共線的坐標(biāo)表示問題提出?若e1、e2是同一平面內(nèi)的兩個(gè)不共線向量,則對于這一平面內(nèi)的任意向量a,有且只有一對實(shí)數(shù)λ1,λ2,使a=λ1e1+λ2e2.?設(shè)i、j是與x軸、y軸同向的兩個(gè)單位向量,若a=xi+yj,則a=(x,y).,使得向量具有代數(shù)特征,并
2024-07-28 00:10
2024-11-10 01:04
【總結(jié)】復(fù)習(xí)回顧:平面向量1、定義:既有大小又有方向的量。幾何表示法:用有向線段表示字母表示法:用小寫字母表示,或者用表示向量的有向線段的起點(diǎn)和終點(diǎn)字母表示。相等向量:長度相等且方向相同的向量ABCD2、平面向量的加法、減法與數(shù)乘運(yùn)算向量加法的三角形法則ab向量加法的平行四邊形法
2024-11-09 01:24
【總結(jié)】平面向量的正交分解及坐標(biāo)表示的教學(xué)案例一.案例要解決的教學(xué)困惑:在高中數(shù)學(xué)教材中,很多知識,如果學(xué)生記住結(jié)論,學(xué)生就能解決一系列的數(shù)學(xué)題目。對于這類知識的教學(xué)一直困擾我很久。到底是簡單地讓學(xué)生記住一個(gè)公式,一個(gè)結(jié)論,或是純粹地模仿技能,還是要讓學(xué)生通過不斷的思考、探究、實(shí)踐,摸索總結(jié)出公式和結(jié)論呢?新的《普通數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“學(xué)生的數(shù)學(xué)學(xué)習(xí)活動不應(yīng)只限于對概念、結(jié)論和技能的記憶、模
2025-04-17 01:00
【總結(jié)】空間向量運(yùn)算的坐標(biāo)表示(二)O?xyz??,,ijk為單位正交基底以建立空間直角坐標(biāo)系O—xyz(,,)xyzpxiyjzk?????,,ijk為基
2024-11-09 03:12
【總結(jié)】§3.空間向量的正交分解及其坐標(biāo)表示知識點(diǎn)一向量基底的判斷已知向量{a,b,c}是空間的一個(gè)基底,那么向量a+b,a-b,c能構(gòu)成空間的一個(gè)基底嗎?為什么?解∵a+b,a-b,c不共面,能構(gòu)成空間一個(gè)基底.假設(shè)a+b,a-b,c共面,則存在x,
2024-12-08 01:49
【總結(jié)】課題坐標(biāo)的標(biāo)示及運(yùn)算教學(xué)目標(biāo)知識與技能了解平面向量的正交分解,掌握向量的坐標(biāo)表示.過程與方法掌握兩個(gè)向量和、差及數(shù)乘向量的坐標(biāo)運(yùn)算法則.情感態(tài)度價(jià)值觀正確理解向量坐標(biāo)的概念,要把點(diǎn)的坐標(biāo)與向量的坐標(biāo)區(qū)分開來.重點(diǎn)溝通向量“數(shù)”與“形”的特征,使向
2024-11-19 17:32
【總結(jié)】高考總復(fù)習(xí).理科.數(shù)學(xué)第八章平面向量高考總復(fù)習(xí).理科.數(shù)學(xué)考綱分解解讀高考總復(fù)習(xí).理科.數(shù)學(xué)(1)了解向量的實(shí)際背景.(2)理解平面向量的概念,理解兩個(gè)向量相等的含義.(3)理解向量的幾何表示.2.(1)掌握向量加法、減法的運(yùn)算,并理解其幾何意義.
2024-08-10 17:58
【總結(jié)】向量共線的條件和軸上向量的坐標(biāo)運(yùn)算一般地,實(shí)數(shù)λ與向量a的積是一個(gè)向量,這種運(yùn)算叫做向量的數(shù)乘運(yùn)算,記作λa,它的長度和方向規(guī)定如下:(1)|λa|=|λ||a|(2)當(dāng)λ0時(shí),λa的方向與a方向相同;當(dāng)λ0時(shí),λa的方向與a方向相反;特別地,當(dāng)
【總結(jié)】空間直角坐標(biāo)系與空間向量一、建立空間直角坐標(biāo)系的幾種方法構(gòu)建原則:遵循對稱性,盡可能多的讓點(diǎn)落在坐標(biāo)軸上。作法:充分利用圖形中的垂直關(guān)系或構(gòu)造垂直關(guān)系來建立空間直角坐標(biāo)系.類型舉例如下:(一)用共頂點(diǎn)的互相垂直的三條棱構(gòu)建直角坐標(biāo)系 例1 已知直四棱柱ABCD-A1B1C1D1中,AA1=2,底面ABCD是直角梯形,∠A為直角,AB∥CD,AB=4,AD=2,D
2025-03-25 06:42
【總結(jié)】平面向量的正交分解及坐標(biāo)表示平面向量的坐標(biāo)運(yùn)算1.下列說法正確的有()①向量的坐標(biāo)即此向量終點(diǎn)的坐標(biāo).②位置不同的向量其坐標(biāo)可能相同.③一個(gè)向量的坐標(biāo)等于它的終點(diǎn)坐標(biāo)減去它的始點(diǎn)坐標(biāo).④相等的向量坐標(biāo)一定相同.A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)解析:向量的坐標(biāo)是其終點(diǎn)坐標(biāo)減去起點(diǎn)對
【總結(jié)】平面向量的坐標(biāo)運(yùn)算學(xué)習(xí)目標(biāo):1.了解平面向量的正交分解,掌握向量的坐標(biāo)表示.2.掌握兩個(gè)向量和、差及數(shù)乘向量的坐標(biāo)運(yùn)算法則.3.正確理解向量坐標(biāo)的概念,要把點(diǎn)的坐標(biāo)與向量的坐標(biāo)區(qū)分開來.【學(xué)法指導(dǎo)】1.向量的正交分解是把一個(gè)向量分解為兩個(gè)互相垂直的向量,是向量坐標(biāo)表示的理論依據(jù).向量的坐標(biāo)表示
2024-11-19 17:41
【總結(jié)】空間向量運(yùn)算的坐標(biāo)表示1.空間向量的基本定理:2.平面向量的坐標(biāo)表示及運(yùn)算律:(,,)pxiyjijxy??(1)若分別是軸上同方向的兩個(gè)單位向量(,)pxy則的坐標(biāo)為1212(,),(,)aaabbb??(2)若11221122(,),(,)abab
2025-06-16 04:35