【總結(jié)】第一篇:均值不等式及其應(yīng)用 教師寄語:一切的方法都要落實(shí)到動手實(shí)踐中 高三一輪復(fù)習(xí)數(shù)學(xué)學(xué)案 均值不等式及其應(yīng)用 一.考綱要求及重難點(diǎn) 要求:(小):,難度為中低檔題,.考點(diǎn)梳理 a+:3;...
2024-10-27 10:26
【總結(jié)】精品資源均值不等式應(yīng)用(二)教學(xué)目的:要求學(xué)生更熟悉基本不等式和極值定理,從而更熟練地處理一些最值問題。教學(xué)重點(diǎn): 均值不等式應(yīng)用教學(xué)過程:一、復(fù)習(xí):基本不等式、極值定理二、例題:1.求函數(shù)的最大值,下列解法是否正確?為什么?解一:∴解二:當(dāng)即時答:以上兩種解法均有錯誤。解一錯在取不到“=”,即不存在使得;解二錯在不是定值
2025-06-24 04:36
【總結(jié)】武勝中學(xué)高2009級培優(yōu)講座柯西不等式及應(yīng)用武勝中學(xué)周迎新柯西不等式:設(shè)a1,a2,…an,b1,b2…bn均是實(shí)數(shù),則有(a1b1+a2b2+…+anbn)2≤(a12+a22+…an2)(b12+b22+…bn2)等號當(dāng)且僅當(dāng)ai=λbi(λ為常數(shù),i=1,,…n)時取到。注:二維柯西不等式:(一)、柯西不等式的證明柯西不等式有多種證明方法,你能怎么嗎?
2025-06-23 14:32
【總結(jié)】......基本不等式及應(yīng)用一、考綱要求:.2.會用基本不等式解決簡單的最大(小)值問題.3.了解證明不等式的基本方法——綜合法.二、基本不等式基本不等式不等式成立的條件等號成立的條件≤a0,
2025-05-13 23:12
【總結(jié)】不等式的應(yīng)用高三備課組一、內(nèi)容歸納1知識精講:在前面幾節(jié)課學(xué)習(xí)的不等式的性質(zhì)、證明和解不等式的基礎(chǔ)上運(yùn)用不等式的的知識和思想方法分析、解決一些涉及不等式關(guān)系的問題.2重點(diǎn)難點(diǎn):善于將一個表面上看來并非是不等式的問題借助不等式的有關(guān)部門知識來解決.3思維方式:合理轉(zhuǎn)化;正
2024-11-09 08:50
【總結(jié)】第八講不等式與不等式組一、知識網(wǎng)絡(luò)結(jié)構(gòu)圖二、考點(diǎn)精析考點(diǎn)一:不等式基本性質(zhì)運(yùn)用1.由x0D.a2,則a的取值范圍是( )A.a(chǎn)0B.aC.a&l
2025-04-16 12:51
【總結(jié)】義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書北師大教材知識點(diǎn)回顧:不等式:表示不等關(guān)系的式子.常用符號:<、>、≤、≥、≠。不等式的解:能使不等式成立的未知數(shù)的值。解集:一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。
2024-11-06 15:49
【總結(jié)】溫故知新1、比較兩實(shí)數(shù)大小的常用方法△=b2-4ac△0△=0△0)的圖象ax2+bx+c=0(a0)的根ax2+bx+0(a0)的解集ax2+bx+c0(a&
2024-11-17 19:51
【總結(jié)】2020屆高考數(shù)學(xué)復(fù)習(xí)強(qiáng)化雙基系列課件42《不等式的應(yīng)用》一、內(nèi)容歸納1知識精講:在前面幾節(jié)課學(xué)習(xí)的不等式的性質(zhì)、證明和解不等式的基礎(chǔ)上運(yùn)用不等式的的知識和思想方法分析、解決一些涉及不等式關(guān)系的問題.2重點(diǎn)難點(diǎn):善于將一個表面上看來并非是不等式的問題借助不等式的有關(guān)部門知識來解決.3思維方式:合理轉(zhuǎn)化;正
2024-11-11 08:50
【總結(jié)】......基本不等式習(xí)專題之基本不等式做題技巧【基本知識】1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時取“=”)(3)若,則(當(dāng)且僅當(dāng)時取“=”)(4)當(dāng)且僅當(dāng)
2025-05-13 23:45
【總結(jié)】不等式與不等式組專題復(fù)習(xí)(一)不等式考點(diǎn)1:不等式的定義知識點(diǎn)::用符號“<”“>”“≤”“≥”表示大小關(guān)系的式子叫做不等式。(像a+2≠a-2這樣用“≠”號表示不等關(guān)系的式子也是不等式。):①x是正數(shù),則x>0;②x是負(fù)數(shù),則x<0;③x是非負(fù)數(shù),則x≥0;④x是非正數(shù),則x≤0;⑤x大于y,則x-y>0;⑥x小于y,則x-y<0;
【總結(jié)】0不等式的若干證明方法定理的應(yīng)用Someoftheinequalityproofmethodprovetheexistenceofhigh-dimensionalimplicationfunctiontheorem專業(yè):數(shù)學(xué)與應(yīng)用數(shù)學(xué)作者:胡元勇指
2025-05-12 01:44
【總結(jié)】不等式的文字應(yīng)用制作人:黃宇寧知識復(fù)習(xí)不等式的基本性質(zhì):⑴不等式的兩邊都加上(或減去)同一個數(shù)或同一個整式,不等號方向不變.即:如果ab,那么a+cb+c,a-cb-c;⑵不等式的兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變.即:如果a&g
2025-05-05 18:36
【總結(jié)】張彥潔高級教師2020年名師課堂輔導(dǎo)講座—高中部分pabba22?????pba2min???4222sbaab???????????42maxsab??[學(xué)習(xí)內(nèi)容]一、求最值:1、若a,b∈R+且ab=p(p為常數(shù))則
2024-11-19 08:49
【總結(jié)】柯西不等式的證明及相關(guān)應(yīng)用摘要:柯西不等式是高中數(shù)學(xué)新課程的一個新增內(nèi)容,也是高中數(shù)學(xué)的一個重要知識點(diǎn),它不僅歷史悠久,形式優(yōu)美,結(jié)構(gòu)巧妙,也是證明命題、研究最值問題的一個強(qiáng)有力的工具。關(guān)鍵詞:柯西不等式柯西不等式變形式最值一、柯西(Cauchy)不等式:等號當(dāng)且僅當(dāng)或時成立(k為常數(shù),)現(xiàn)將它的證明介紹如下:方法1
2025-04-09 01:52