【總結】平面向量應用舉例考查知識點及角度難易度及題號基礎中檔稍難向量在物理中的應用1、3、59向量在幾何中的應用6、7、10綜合運用2、48111.若向量OF1→=(1,1),OF2→=(-3,-2)分別表示兩個力F1,F(xiàn)2,則|F1+F2|為()A.10
2024-11-19 19:36
【總結】§2.平面向量共線的坐標表示【學習目標、細解考綱】1、在理解向量共線的概念的基礎上,學習用坐標表示向量共線的條件。2、利用向量共線的坐標表示解決有關問題?!局R梳理、雙基再現(xiàn)】1、兩向量平行(共線)的條件若//(0)abb?則存在唯一實數(shù)使//ab?;反之,存在唯一實數(shù)?。使//
2024-11-30 13:46
【總結】由于向量的線性運算和數(shù)量積運算具有鮮明的幾何背景,平面幾何的許多性質(zhì),如平移、全等、相似、長度、夾角都可以由向量的線性運算及數(shù)量積表示出來,因此,利用向量方法可以解決平面幾何中的一些問題。平面幾何中的向量方法例1、證明平行四邊形四邊平方和等于兩對角線平方和ABDC已知:平行四邊形ABCD。求證:
2025-08-01 17:29
【總結】【金版學案】2021-2021學年高中數(shù)學第2章平面向量本章知識整合蘇教版必修4網(wǎng)絡構建平面向量的線性運算e1,e2是不共線的向量,已知向量AB→=2e1+ke2,CB→=e1+3e2,CD→=2e1-e2,若A、B、D三點共線,求k的值.分析:因為A、B、D三點共線
2024-12-05 03:23
【總結】(文)已知向量(Ⅰ)若,求的值;(Ⅱ)若求的值。答案:(Ⅰ)因為,所以于是,故(Ⅱ)由知,所以從而,即,,,所以,或.因此,或來源:09年高考湖南卷題型:解答題,難度:中檔已知向量a=(cosθ,sinθ),向量b=(,-1),則|2a-b|的最大值、最小值分別是(A)
2025-01-14 11:40
【總結】課題:平面向量基本定理班級:姓名:學號:第學習小組【學習目標】1、了解平面向量基本定理;2、掌握平面向量基本定理及其應用。【課前預習】1、共線向量基本定理一般地,對于兩個向量??baa,0?,如果有一個實數(shù)?,使_______
2024-11-19 21:43
【總結】來源教學內(nèi)容:§教學目標1.了解向量的物理背景及在物理中的意義2.理解向量、零向量、單位向量、相等向量的概念,會用字母表示向量,能讀寫已知圖中的向量;3.掌握向量的幾何表示,明確向量的長度、零向量、單位向量的幾何意義;4.了解共線向量、平行向量的概念,會根據(jù)圖形判定是否平行、共線、相
2024-12-08 16:21
【總結】2.3向量的坐標表示2.平面向量基本定理情景:“神舟”十號宇宙飛船在升空的某一時刻,速度可以分解成豎直向上和水平向前的兩個分速度.在力的分解的平行四邊形法則中,我們看到一個力可以分解為兩個不共線方向的力的和.思考:平面內(nèi)任一向量是否可以用兩個不共線的向量來表示呢?1.如果e1,e2是同一平面內(nèi)
2024-12-05 10:15
【總結】求函數(shù)的值域.答案:構造向量....另一方面:.所以原函數(shù)的值域是.來源:1題型:解答題,難度:中檔矩形ABCD內(nèi)任一點P,求證:PA2+PC2=PB2+PD2答案:證明:建系,設點P坐標為(x,y)A(a,0)B(a,b)C(0,b)
2025-01-14 10:05
【總結】已知向量和,且求的值.答案:解法一:===由已知,得又解法二:====由已知得來源:05年山東題型:解答題,難度:較難
2025-01-15 09:39
【總結】§2.平面向量的概念及幾何表示【學習目標、細解考綱】了解向量豐富的實際背景,理解平面向量的概念及向量的幾何表示?!局R梳理、雙基再現(xiàn)】1、向量的實際背景有下列物理量:位移,路程,速度,速率,力,功,其中位移,力,功都是既有_______________又有_________________的量.路程,
2024-11-30 13:51
【總結】Oxya引入:,點A可以用什么來表示??OxyA(a,b)aba:如果e1,e2是同一平面內(nèi)的兩個不共線的向量,那么對于這一平面內(nèi)的任一向量a,有且只有一對實數(shù)λ1,λ2使得a=λ1e1+λ2e2.不共線的兩向量e1,e2叫做這一平面內(nèi)所
2024-11-17 15:05
【總結】高中數(shù)學必修4知識點總結第二章平面向量16、向量:既有大小,又有方向的量.數(shù)量:只有大小,沒有方向的量.有向線段的三要素:起點、方向、長度.零向量:長度為的向量.單位向量:長度等于個單位的向量.平行向量(共線向量):方向相同或相反的非零向量.零向量與任一向量平行.相等向量:長度相等且方向相同的向量.17、向量加法運算:⑴三角形法則的特點:首尾
2025-04-04 05:10
【總結】平面向量1向量的概念:①向量:既有大小又有方向的量向量一般用……來表示,或用有向線段的起點與終點的大寫字母表示,如:幾何表示法,;坐標表示法向量的大小即向量的模(長度),記作||即向量的大小,記作||向量不能比較大小,但向量的??梢员容^大小.②零向量:長度為0的向量,記為,其方向是任意的,與任意向量平行零向量=||=0由于的方向是任意的,且規(guī)定平行于任何向
2025-04-04 05:09
【總結】正交分解問題?問題,理論上,一條直線由該直線上的一個向量確定了,那么平面呢?設、是同一平面內(nèi)的兩個不共1e2e線的向量,a是這一平面內(nèi)的任一向量,1e2e我們研究a與、之間的關系。1ea2e物理學中的力的分解模型OC=OM+ON=
2025-07-23 03:15