【總結(jié)】高中數(shù)學(xué)競(jìng)賽講義(八)──平面向量一、基礎(chǔ)知識(shí)定義1?既有大小又有方向的量,稱為向量。畫圖時(shí)用有向線段來(lái)表示,線段的長(zhǎng)度表示向量的模。向量的符號(hào)用兩個(gè)大寫字母上面加箭頭,或一個(gè)小寫字母上面加箭頭表示。書(shū)中用黑體表示向量,如a.|a|表示向量的模,模為零的向量稱為零向量,規(guī)定零向量的方向是
2025-04-04 05:15
【總結(jié)】第一頁(yè),編輯于星期六:點(diǎn)三十二分。,2.4平面向量的數(shù)量積2.4.1平面向量數(shù)量積的物理背景及其含義,第二頁(yè),編輯于星期六:點(diǎn)三十二分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁(yè),編輯于星期六:點(diǎn)三十...
2025-10-13 18:49
【總結(jié)】第一頁(yè),編輯于星期六:點(diǎn)三十二分。,2.1平面向量的實(shí)際背景及基本概念,第二頁(yè),編輯于星期六:點(diǎn)三十二分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁(yè),編輯于星期六:點(diǎn)三十二分。,第四頁(yè),編輯于星期六:...
2025-10-13 18:47
【總結(jié)】第一頁(yè),編輯于星期六:點(diǎn)三十三分。,2.4平面向量的數(shù)量積2.4.2平面向量數(shù)量積的坐標(biāo)表示、模、夾角,第二頁(yè),編輯于星期六:點(diǎn)三十三分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁(yè),編輯于星期六:點(diǎn)三...
【總結(jié)】第一篇:高中數(shù)學(xué)必修4人教A教案第二章平面向量復(fù)習(xí) 第二章 平面向量復(fù)習(xí)課 (一)一、教學(xué)目標(biāo) 。(共起點(diǎn))和三角形法則(首尾相接)。:||a|-|b|≤|a±b|≤|a|+|b|(試問(wèn):取等...
2025-11-07 23:32
【總結(jié)】1章末知識(shí)整合蘇教版必修3題型一算法設(shè)計(jì)已知平面直角坐標(biāo)系內(nèi)兩不同點(diǎn)A,B,試求AB的垂直平分線的方程.試寫出這個(gè)問(wèn)題的算法.分析:首先應(yīng)判斷A、B兩點(diǎn)的橫、縱坐標(biāo)是否相等,在不等時(shí),先求垂直平分的斜率或線段AB的中點(diǎn)坐標(biāo),最后由點(diǎn)斜式寫出直線方程.解析:算法如下:
2025-11-26 00:28
【總結(jié)】平面向量的坐標(biāo)一、教學(xué)目標(biāo):(1)掌握平面向量正交分解及其坐標(biāo)表示.(2)會(huì)用坐標(biāo)表示平面向量的加、減及數(shù)乘運(yùn)算.(3)理解用坐標(biāo)表示的平面向量共線的條件.教材利用正交分解引出向量的坐標(biāo),在此基礎(chǔ)上得到平面向量線性運(yùn)算的坐標(biāo)表示及向量平行的坐標(biāo)表示;最后通過(guò)講解例題,鞏固知識(shí)結(jié)論,培養(yǎng)學(xué)生應(yīng)用能力.通過(guò)本節(jié)內(nèi)
2025-11-10 23:18
【總結(jié)】Oxya引入:,點(diǎn)A可以用什么來(lái)表示??OxyA(a,b)aba:如果e1,e2是同一平面內(nèi)的兩個(gè)不共線的向量,那么對(duì)于這一平面內(nèi)的任一向量a,有且只有一對(duì)實(shí)數(shù)λ1,λ2使得a=λ1e1+λ2e2.不共線的兩向量e1,e2叫做這一平面內(nèi)所
2025-11-08 15:05
【總結(jié)】.第二章平面向量一、選擇題(第1題)1.在△ABC中,AB=AC,D,E分別是AB,AC的中點(diǎn),則().A.與共線 B.與共線C.與相等 D.與相等2.下列命題正確的是().A.向量與是兩平行向量B.若a,b都是單位向量,則a=bC.若=,則A,B,C,D四點(diǎn)構(gòu)成
2025-08-04 23:56
【總結(jié)】......高中數(shù)學(xué)(平面向量)綜合練習(xí)含解析1.在中,,.若點(diǎn)滿足,則()A.B.C.D.2.已知,,點(diǎn)C在內(nèi),且,,則等于()20090420A.
2025-04-04 05:05
【總結(jié)】高中數(shù)學(xué)(平面向量)綜合練習(xí)含解析1.在中,,.若點(diǎn)滿足,則()A.B.C.D.2.已知,,點(diǎn)C在內(nèi),且,,則等于()20090420A.3B.C.D.3.若向量滿足,且,則()A.4B.3C.2
2025-06-07 23:55
【總結(jié)】平面向量基本定理1.設(shè)O點(diǎn)是平行四邊形ABCD兩對(duì)角線的交點(diǎn),下列向量組中可作為這個(gè)平行四邊形所在平面上表示其他所有向量的基底的是()①AD→與AB→;②DA→與BC→;③CA→與DC→;④OD→與OB→.A.①②B.①③C.①④D.③④解析:只要是平面上不共線的兩個(gè)向量
2025-11-10 20:38
【總結(jié)】平面向量應(yīng)用舉例1.如果一架飛機(jī)向東飛行200km,再向南飛行300km,記飛機(jī)飛行的路程為s,位移為a,那么()A.s>|a|B.s<|a|C.s=|a|D.s與|a|不能比大小解析:s=200+300=500(km),|a|=2020+3002=10013(km),∴s>
2025-11-10 19:36
【總結(jié)】第二章平面向量,第一頁(yè),編輯于星期六:點(diǎn)三十三分。,§3從速度的倍數(shù)到數(shù)乘向量3.2平面向量基本定理,第二頁(yè),編輯于星期六:點(diǎn)三十三分。,,自主學(xué)習(xí)梳理知識(shí),課前基礎(chǔ)梳理,第三頁(yè),編輯于星期六:點(diǎn)三十...
2025-10-13 18:50
【總結(jié)】平面向量1向量的概念:①向量:既有大小又有方向的量向量一般用……來(lái)表示,或用有向線段的起點(diǎn)與終點(diǎn)的大寫字母表示,如:幾何表示法,;坐標(biāo)表示法向量的大小即向量的模(長(zhǎng)度),記作||即向量的大小,記作||向量不能比較大小,但向量的??梢员容^大小.②零向量:長(zhǎng)度為0的向量,記為,其方向是任意的,與任意向量平行零向量=||=0由于的方向是任意的,且規(guī)定平行于任何向
2025-04-04 05:08