【總結】初四數(shù)學二次函數(shù)中的最大面積專題練習題1.如圖,在直角坐標系中有一直角三角形AOB,O為坐標原點,OA=1,tan∠BAO=3,將此三角形繞原點O逆時針旋轉90°,得到△DOC.拋物線y=ax2+bx+c經過點A、B、C.(1)求拋物線的解析式.(2)若點P是第二象限內拋物線上的動點,其橫坐標為t.①設拋物線對稱軸l與x軸交于一點E,連接P
2025-03-24 06:27
【總結】......二次函數(shù)在閉區(qū)間上的最值一、知識要點:一元二次函數(shù)的區(qū)間最值問題,核心是函數(shù)對稱軸與給定區(qū)間的相對位置關系的討論。一般分為:對稱軸在區(qū)間的左邊,中間,右邊三種情況.設,求在上的最大值與最小值。分析:
2025-03-24 06:24
【總結】2015年周末班學案自信釋放潛能;付出鑄就成功!WLS二次函數(shù)的最值問題【例題精講】題面:當-1≤x≤2時,函數(shù)y=2x2-4ax+a2+2a+2有最小值2,求a的所有可能取值.【拓展練習】如圖,在平面直角坐標系xOy中,二次函數(shù)的圖象與軸交于(-1,0)、(3,0)兩點,頂點為.(1)求此二次函數(shù)解析式;
2025-03-24 06:26
【總結】......最短路徑問題——和最小【方法說明】“和最小”問題常見的問法是,在一條直線上面找一點,使得這個點與兩個定點距離的和最?。▽④婏嬹R問題).如圖所示,在直線l上找一點P使得PA+PB最?。旤cP為直線AB′與直線l的交點時,PA+P
2025-03-26 23:36
【總結】初中數(shù)學之二次函數(shù)最值問題一、選擇題1.(2008年山東省濰坊市)若一次函數(shù)的圖像過第一、三、四象限,則函數(shù)()B..有最大值2.(2008浙江杭州)如圖,記拋物線的圖象與正半軸的交點為,將線段分成等份.設分點分別為,,,,過每個分點作軸的垂線,分別與拋物線交于點,,…,,再記直角三角形,,…的面積分別為,,…,這樣就有,,…;記,當越來越大時,你猜想最
2025-04-04 03:45
【總結】教學課題(1)課型新授本課題教時數(shù):2本教時為第1教時備課日期9月17日教學目標:1.掌握長方形和窗戶透光最大面積問題,體會數(shù)學的模型思想和數(shù)學應用價值2.學會分析和表示不同背景下實際問題中的變量之間的二次函數(shù)關系.教學重點:分析和表示不同背景下實際問題中的變量之間的二次函數(shù)關
2025-03-25 06:04
【總結】課題淺談與二次函數(shù)有關的面積問題課型習題課第(一)課時授課時間教學目標知識和能力能夠根據(jù)二次函數(shù)中不同圖形的特點選擇方法求圖形面積。過程和方法通過觀察、分析、概括、總結等方法了解二次函數(shù)面積問題的基本類型,并掌握二次函數(shù)中面積問題的相關計算,從而體會數(shù)形結合思想和轉化思想在二次函數(shù)中的應用。情感態(tài)度和價值觀由簡單題入手逐漸
2025-04-16 12:51
【總結】二次函數(shù)應用題利潤問題例1、商場促銷,將每件進價為80元的服裝按原價100元出售,一天可售出140件,后經市場調查發(fā)現(xiàn),該服裝的單價每降低1元,其銷量可增加10件現(xiàn)設一天的銷售利潤為y元,降價x元。(1)求按原價出售一天可得多少利潤?(2)求銷售利潤y與降價x的的關系式(3)商場要使每天利潤為2850元并且使得玩家得到實惠,應該降價多少元?(4)要使利潤最大,則需降價多少
【總結】成都市中考壓軸題(二次函數(shù))精選【例一】.如圖,拋物線y=ax2+c(a≠0)經過C(2,0),D(0,﹣1)兩點,并與直線y=kx交于A、B兩點,直線l過點E(0,﹣2)且平行于x軸,過A、B兩點分別作直線l的垂線,垂足分別為點M、N.(1)求此拋物線的解析式;(2)求證:AO=AM;(3)探究:①當k=0時,直線y=kx與x軸重合,求出此時的值;②試說明無論k取何值,
【總結】二次函數(shù)最大面積例1如圖所示,等邊△ABC中,BC=10cm,點,分別從B,A同時出發(fā),以1cm/s的速度沿線段BA,AC移動,當移動時間t為何值時,△的面積最大?并求出最大面積。A
【總結】 冪函數(shù)與二次函數(shù)基礎梳理1.冪函數(shù)的定義一般地,形如y=xα(α∈R)的函數(shù)稱為冪函數(shù),其中底數(shù)x是自變量,α為常數(shù).2.冪函數(shù)的圖象在同一平面直角坐標系下,冪函數(shù)y=x,y=x2,y=x3,y=x,y=x-1的圖象分別如右圖.解析式f(x)=ax2+bx+c(a0)f(x)=ax2+bx+c(a0)圖象定義域(-∞,+∞
2025-06-20 06:07
【總結】二次函數(shù)小結一、二次函數(shù)的定義一般地,如果y=ax2+bx+c(a、b、c是常數(shù),a≠0),那么y叫做x二次函數(shù)。注:二次函數(shù)y=ax2+bx+c的結構特征:等號左邊是函數(shù),右邊是關于自變量x的二次式,的最高次數(shù)是2;二次項系數(shù)a≠0。二、二次函數(shù)的圖象及畫法1、二次函數(shù)y=ax2+bx+c(a≠0)的圖象是以為頂點,以直線x
2025-08-04 10:28
【總結】二次函數(shù)應用②1.心理學家發(fā)現(xiàn),學生對概念的接受能力y和提出概念所用的時間x(單位:分)之間大體滿足函數(shù)關系式:(0≤x≤30)。y的值越大,表示接受能力越強。試根據(jù)關系式回答:(1)若提出概念用10分鐘,學生的接受能力是多少?(2)概念提出多少時間時?學生的接受能力達到最強?2.某地要建造一個圓形噴水池,在水池中央垂直于水面安裝一個
2025-07-26 03:42
【總結】1、二次函數(shù)所描述的關系教學內容:P34~P37教學目標:1)經歷探索和表示二次函數(shù)關系的過程,獲得用二次函數(shù)表示變量之間關系的體驗2)能夠表示簡單變量之間的二次函數(shù)關系3)能夠利用嘗試求值的方法解決實際問題,如猜測增種多少棵橙子樹可以使橙子的總產量最多的問題教學重點和難點重點:表示簡單變量之間的二次函數(shù)關系
2024-12-03 05:02
【總結】二次函數(shù)零點問題【探究拓展】探究1:設分別是實系數(shù)一元二次方程和的一個根,且求證:方程有且僅有一根介于之間.變式1:已知函數(shù)f(x)=ax2+4x+b(a0,a、b∈R),設關于x的方程f(x)=0的兩實根為x1、x2,方程f(x)=x的兩實根為α、β.(1)若|α-β|=1,求a、b的關系式;(2)若a、b均為負整數(shù)
2025-04-04 04:25