【總結(jié)】解答題1.如圖,在四棱錐PABCD?中,PA?平面ABCD,底面ABCD是菱形,2,60ABBAD???.(Ⅰ)求證:BD?平面;PAC(Ⅱ)若,PAAB?求PB與AC所成角的余弦值;(Ⅲ)當平面PBC與平面PDC垂直時,求PA的長.
2025-01-09 15:44
【總結(jié)】平面的基本性質(zhì)公理1:如果一條直線上的兩點在一個平面內(nèi),那么這條直線在此平面內(nèi)(教師引導學生閱讀教材P42前幾行相關內(nèi)容,并加以解析)符號表示為LA·αA∈LB∈L=LαA∈αB∈α公理1作用:判斷直線是否在平面內(nèi)生活中,我們看到三腳架可以牢固地支撐照相機或測量用的平板儀等等……C·
2025-04-17 00:53
【總結(jié)】2020年普通高等學校招生全國統(tǒng)一考試(新課標Ⅰ卷)數(shù)學(文科)本試卷分第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,共150分,考試時間120分鐘.第Ⅰ卷2020·新課標Ⅰ卷第1頁一、選擇題(本大題共12小題,每小題5分,共60分.在每小題給出的四個選項中,只
2024-11-02 05:52
【總結(jié)】高考立體幾何大題及答案1.(2009全國卷Ⅰ文)如圖,四棱錐中,底面為矩形,底面,,,點在側(cè)棱上,。(I)證明:是側(cè)棱的中點;求二面角的大小。2.(2009全國卷Ⅱ文)如圖,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分別為AA1、B1C的中點,DE⊥平面BCC1(Ⅰ)證明:AB=AC(Ⅱ)設二面
2025-06-26 05:02
【總結(jié)】高考立體幾何大題及答案1.(2009全國卷Ⅰ文)如圖,四棱錐中,底面為矩形,底面,,,點在側(cè)棱上,。(I)證明:是側(cè)棱的中點;求二面角的大小。2.(2009全國卷Ⅱ文)如圖,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分別為AA1、B1C的中點,DE⊥平面BCC1(Ⅰ)證明:AB=AC(Ⅱ)設
2025-06-26 04:58
【總結(jié)】新課標卷高考真題1、(2016年全國I高考)如圖,在以A,B,C,D,E,F(xiàn)為頂點的五面體中,面ABEF為正方形,AF=2FD,,且二面角DAFE與二面角CBEF都是.(I)證明:平面ABEF平面EFDC;(II)求二面角EBCA的余弦值.
2025-04-17 12:44
【總結(jié)】解析幾何單元易錯題練習一.考試內(nèi)容:橢圓及其標準方程.橢圓的簡單幾何性質(zhì).橢圓的參數(shù)方程.雙曲線及其標準方程.雙曲線的簡單幾何性質(zhì).拋物線及其標準方程.拋物線的簡單幾何性質(zhì).二.考試要求:掌握橢圓的定義、標準方程和橢圓的簡單幾何性質(zhì),了解橢圓的參數(shù)方程.掌握雙曲線的定義、標準方程和雙曲線的簡單幾何性質(zhì).掌握拋物線的定義、標準
2024-11-02 16:39
【總結(jié)】10《高中復習資料》數(shù)學1.甲烷分子由一個碳原子和四個氫原子組成,其空間構(gòu)型為一正四面體,碳原子位于該正四面體的中心,個點(體積忽略不計),且已知碳原子與每個氫原子間的距離都為,則以四個氫原子為頂點的這個正四面體的體積為()A,B,C,D,2.夾在兩個平行平面之間的球,圓柱,圓錐在這兩個平面上的射影
2025-04-17 13:10
【總結(jié)】2015年高考立體幾何大題試卷1.【2015高考新課標2,理19】如圖,長方體中,,,,點,分別在,上,.過點,的平面與此長方體的面相交,交線圍成一個正方形.DD1C1A1EFABCB1(1題圖)(Ⅰ)在圖中畫出這個正方形(不必說出畫法和理由);(Ⅱ)求直線與平面所成角的正弦值.2.【2015江蘇高考,16】如圖,在直三棱柱
2025-04-17 00:05
【總結(jié)】第一篇:文科立體幾何證明 立體幾何證明題常見題型 1、如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD^底面ABCD,PD=DC=1,E是PC的中 點,作EF^PB交PB于點F. ...
2024-10-26 17:25
【總結(jié)】第一篇:2014年高考數(shù)學文科(高考真題+模擬新題)分類:M單元推理與證明 數(shù)學 M單元推理與證明 M1合情推理與演繹推理 16.,[2014·福建卷]已知集合{a,b,c}={0,1,2},...
2024-11-08 18:30
【總結(jié)】第35講空間幾何體的結(jié)構(gòu)第36講空間幾何體的三視圖和直觀圖第37講平面的基本性質(zhì)第38講空間中的平行關系│知識框架知識框架│知識框架│知識框架1.空間幾何體(1)認識柱、錐、臺、球及其簡單組合體的結(jié)構(gòu)特征,并能運用
2025-07-22 16:34
【總結(jié)】立體幾何大題練習(文科):1.如圖,在四棱錐S﹣ABCD中,底面ABCD是梯形,AB∥DC,∠ABC=90°,AD=SD,BC=CD=,側(cè)面SAD⊥底面ABCD.(1)求證:平面SBD⊥平面SAD;(2)若∠SDA=120°,且三棱錐S﹣BCD的體積為,求側(cè)面△SAB的面積.【分析】(1)由梯形ABCD,設BC=a,則CD=a,AB=2a,運用
2025-07-24 12:10
【總結(jié)】常規(guī)幾何圖形的立體幾何問題1.如圖,在長方體中,點在棱的延長線上,且.BEADC(Ⅰ)求證:∥平面;(Ⅱ)求證:平面平面;(Ⅲ)求四面體的體積.ABCPD,在四棱錐中,平面平面,,是等邊三角形,已知,.(1)求證:平面;(2)求三棱錐的體積.3.如圖,四棱錐
2025-04-17 08:18
【總結(jié)】專業(yè)整理分享文科立體幾何大題復習 一.解答題(共12小題)1.如圖1,在正方形ABCD中,點,E,F(xiàn)分別是AB,BC的中點,BD與EF交于點H,點G,R分別在線段DH,HB上,且.將△AED,△CFD,△BEF分別沿DE,DF,EF折起,使點A,B,C重合于點P,如圖2所示.
2025-04-17 01:27