【總結】圓錐曲線,,直線與其相交于兩點,中點的橫坐標為,則此雙曲線的方程是A.B.C.D.21.(本小題滿分14分)已知常數(shù),向量,,,經過原點以為方向向量的直線與經過定點以為方向向量的直線相交于點,:是否存在兩個定點,,求出的坐標;若不存在,說明理由.
2025-04-17 07:02
【總結】經典例題精析類型一:求曲線的標準方程 1.求中心在原點,一個焦點為且被直線截得的弦AB的中點橫坐標為的橢圓標準方程. 思路點撥:先確定橢圓標準方程的焦點的位置(定位),選擇相應的標準方程,再利用待定系數(shù)法確定、(定量). 解析: 方法一:因為有焦點為, 所以設橢圓方程為,, 由,消去得, 所以 解得
2025-06-22 16:01
【總結】高考圓錐曲線壓軸題型總結直線與圓錐曲線相交,一般采取設而不求,利用韋達定理,在這里我將這個問題分成了三種類型,其中第一種類型的變式比較多。而方程思想,函數(shù)思想在這里也用得多,兩種思想可以提供簡單的思路,簡單的說就是只需考慮未知數(shù)個數(shù)和條件個數(shù),。使用韋達定理時需注意成立的條件。題型一:條件和結論可以直接或經過轉化后可用兩根之和與兩根之積來處理1.
2025-10-01 10:10
【總結】圓錐曲線:第一定義中要重視“括號”內的限制條件:橢圓中,與兩個定點F1,F(xiàn)2的距離的和等于常數(shù)2a,且此常數(shù)2a一定要大于21FF,當常數(shù)等于21FF時,軌跡是線段F1F2,當常數(shù)小于21FF時,無軌跡;雙曲線中,與兩定點F1,F(xiàn)2的距離的
2025-10-04 08:40
【總結】第1頁共35頁普通高中課程標準實驗教科書—數(shù)學[人教版]高三新數(shù)學第一輪復習教案(講座35)—曲線方程及圓錐曲線的綜合問題一.課標要求:1.由方程研究曲線,特別是圓錐曲線的幾何性質問題常化為等式解決,要加強等價轉化思想的訓練;2.通過圓錐曲線與方程的學習,進一步體會數(shù)形結合的思想;3.了解圓錐曲線
2025-07-28 15:29
【總結】橢圓中的相關問題一、橢圓中的最值問題:,內有一點,為橢圓上任意一點,若要求最小,則這最小值是()A.B.C.D.,,為橢圓上任意一點,若要求最小,則這最小值是()A.B.C.D.3.橢圓上任一點橢圓到兩焦點橢圓,的距離之積的最大值是,最小值是。4.設,則的
2025-07-21 11:38
【總結】第十章圓錐曲線★知識網絡★橢圓雙曲線拋物線定義定義定義標準方程標準方程幾何性質幾何性質應用應用標準方程幾何性質應用圓錐曲線直線與圓錐曲線位置關系相交相切相離圓錐曲線的弦第1講橢圓★知識梳理★1.橢圓定義:(1)第一定義:平面內與兩個定點的距離之和為常數(shù)的動點的軌跡叫橢圓,
2025-08-04 09:58
【總結】圓錐曲線一、知識點1、曲線和方程2、橢圓定義(第一定義、第二定義)3、橢圓標準方程(1、2)與參數(shù)方程4、橢圓性質:圖像特點、范圍、頂點、離心率、對稱性、準線、焦半徑、通徑等5、橢圓與直線的位置關系二、雙曲線1、定義(第一、第二定義)2、標準方程3、性質“圖像、范圍、頂點、離心率、對稱性、準線、漸近線、焦半徑、通徑等4、雙曲線與直
2025-07-23 20:57
【總結】......橢圓與雙曲線的性質橢圓1.點P處的切線PT平分△PF1F2在點P處的外角.2.PT平分△PF1F2在點P處的外角,則焦點在直線PT上的射影H點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.3
2025-04-17 13:06
【總結】直線與圓錐曲線綜合問題一.考點分析。⑴直線與圓錐曲線的位置關系和判定直線與圓錐曲線的位置關系有三種情況:相交、相切、相離.直線方程是二元一次方程,圓錐曲線方程是二元二次方程,由它們組成的方程組,經過消元得到一個一元二次方程,直線和圓錐曲線相交、相切、相離的充分必要條件分別是0??、0??、0??.⑵直線與圓錐曲線相交所得的弦長
2025-01-09 16:02
【總結】完美WORD格式高三文科數(shù)學專題復習之圓錐曲線知識歸納:名稱橢圓雙曲線圖象定義平面內到兩定點的距離的和為常數(shù)(大于)的動點的軌跡叫橢圓即當2﹥2時,軌跡是橢圓,當2=2時,軌跡是一條線段當2﹤
2025-04-17 12:47
【總結】高考數(shù)學圓錐曲線知識點總結方程的曲線:在平面直角坐標系中,如果某曲線C(看作適合某種條件的點的集合或軌跡)上的點與一個二元方程f(x,y)=0的實數(shù)解建立了如下的關系:(1)曲線上的點的坐標都是這個方程的解;(2)以這個方程的解為坐標的點都是曲線上的點,那么這個方程叫做曲線的方程;這條曲線叫做方程的曲線。點與曲線的關系:若曲線C的方程是f(x,y)=0,則點P0(x0,y0)在
【總結】WORD資料可編輯橢圓與雙曲線的性質橢圓1.點P處的切線PT平分△PF1F2在點P處的外角.2.PT平分△PF1F2在點P處的外角,則焦點在直線PT上的射影H點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.3.以焦點弦PQ為直徑的圓必與對應準線相
【總結】學科:數(shù)學復習內容:圓錐曲線【知能目標】,橢圓的標準方程,橢圓的幾何性質,雙曲線的標準方程,雙曲線的幾何性質,等軸雙曲線與共軛雙曲線的定義,拋物線的標準方程,拋物線的幾何性質;【綜合脈絡】【知識歸納】一、橢圓1.定義(1)第一定義:若F1,F(xiàn)2是兩定點,P為動點,且(為常數(shù))則P點的軌跡是橢圓。(2)第二定
2025-01-14 04:02
【總結】-1-高考數(shù)學圓錐曲線知識點總結方程的曲線:在平面直角坐標系中,如果某曲線C(看作適合某種條件的點的集合或軌跡)上的點與一個二元方程f(x,y)=0的實數(shù)解建立了如下的關系:(1)曲線上的點的坐標都是這個方程的解;(2)以這個方程的解為坐標的點都是曲線上的點,那么這個方程叫做曲線的方程;這條曲線叫做方程的曲線。點與曲線的關系:若曲
2025-10-07 22:15