freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

物理化學(xué)第四版習(xí)題解答天津大學(xué)編-wenkub

2023-04-22 01:56:07 本頁面
 

【正文】 力為:=:,容器中達(dá)到新平衡時(shí)應(yīng)有的壓力為:+= 一密閉剛性容器中充滿了空氣,并有少量的水。試求每摩爾干乙炔氣在該冷卻過程中凝結(jié)出水的物質(zhì)的量。 試由波義爾溫度TB的定義式,證明范德華氣體的TB可表示為TB=a/(bR)式中a,b為范德華常數(shù)。 代入方程可得:對(duì)比維里方程,可得:B(T)=ba/(RT) = , 今有0℃,40530kPa的N2氣體,。設(shè)CO2為范德華氣體,試求其壓力。求釜內(nèi)最后排氣至恢復(fù)常壓時(shí)其中氣體含氧的摩爾分?jǐn)?shù)。 氯乙烯、氯化氫及乙烯構(gòu)成的混合氣體中。 1dm3p TN2 如圖所示一帶隔板的容器中,兩側(cè)分別有同溫同壓的氫氣與氮?dú)?,二者均可視為理想氣體。 P2= P1=y2=103= y1=103mol(y1180。 今有20℃的乙烷~丁烷混合氣體,充入一抽成真空的200cm3容器中。p/kPaρ/ 解:氯甲烷(Mw=),作ρ/p~p圖:截距ρ/p=p174。180。 加熱后: n=P1V/RT1+ PV/RT2列方程:2 P1V/RT1=P1V/RT1+ PV/RT2+ 兩個(gè)容器均為V的玻璃球之間用細(xì)管連接,泡內(nèi)密封著標(biāo)準(zhǔn)狀況下的空氣。180。若改充以25℃。(kg/m3)第一章 習(xí)題解答 PV=nRT , V= nRT/P n=121600180。 試估算該氣體的摩爾質(zhì)量。(13330180。若將其中一個(gè)球加熱到100℃,另一個(gè)球則維持0℃,忽略連接細(xì)管中的氣體體積,試求該容器內(nèi)空氣的壓力。 加熱前: n=2 P1V/RT1(+)kPa=0時(shí)可以看成是理想氣體ρ/p=m/PV=Mw/RTMw=180。試求該混合氣體中兩種組分的摩爾分?jǐn)?shù)及分壓力。30+(1y1) 180。 試證明理想混合氣體中任一組分B的分壓力pB與該組分單獨(dú)存在于混合氣體的溫度、體積條件下的壓力相等。 ,H2 3dm3p用水吸收其中的氯化氫。 吸收后設(shè)空氣中氧、氮摩爾分?jǐn)?shù)之比為1:4。解:,Vm=,T=CO2的范德華常數(shù)a=364103/, b =106 代入方程得:解:T=,p=40530kPaN2的范德華常數(shù)a=103/, b =106 利用迭代法計(jì)算可得, 所以:解:根據(jù)波義爾溫度TB的定義式:Vmb≈Vm已知25℃及10℃。當(dāng)容器于300K條件下達(dá)平衡時(shí)。 把25℃的氧氣充入40dm3的氧氣鋼瓶中,102kPa。 102kPa。解:理想氣體n = 1mol恒壓升溫求過程的功。 H2(g) = n2V1 = Vl求Wb.解:Qa + Wa = Qb + Wb∴ Wb = Qa + Wa -Qb = - 求1mol水(H2O,l)在25℃下:(1)壓力從100kPa增加至200kPa時(shí)的ΔH。m3VH2O = m /ρ= M/ρΔH - ΔU = Δ(pV) = V(p2 - p1 ) 摩爾熱力學(xué)能變與壓力無關(guān), ΔU = 0∴ΔH = Δ(pV) = V(p2 - p1 ) 1) ΔH - ΔU = Δ(pV) = V(p2 - p1 ) = 2) ΔH - ΔU = Δ(pV) = V(p2 - p1 ) = 解: 理想氣體恒容升溫過程求過程的W,Q,ΔUΔH和ΔH。 Cp,m = 7/2RQp =ΔH = n Cp,mΔT = 5(-50) = -W =-pambΔV =-p(V2V1) =-(nRT2nRT1) = ΔU =ΔH-nRΔT = nCV,mΔT = 5(50) = - 2mol某理想氣體,Cp,m=7/2R。恒壓 (2) p2 = 200kPa p3 = p2V1 = 50dm3 T2 T3 ∵ p3V3mol1 解: Q = 0 W = 0∴由熱力學(xué)第一定律得過程 ΔU=ΔU(Ar,g)+ΔU(Cu,s)= 0ΔU(Ar,g) = n(Ar,g) CV,m (Ar,g)(t2-0) ΔU(Cu,S) ≈ΔH (Cu,s) = n(Cu,s)Cp,m(Cu,s)(t2-150)解得末態(tài)溫度 t2 = ℃又得過程 ΔH =ΔH(Ar,g) + ΔH(Cu,s) = 或 ΔH =ΔU+Δ(pV) =n(Ar,g)RΔT=48314(-0)= 求1molN2(g)在300K恒溫下從2dm3可逆膨脹到40dm3時(shí)的體積功Wr。mol2解: 雙原子理想氣體 CV,m =( 5/2)R求末態(tài)溫度T及整個(gè)過程的W,Q,ΔUΔH和ΔH。 CV,m = 5/2Rp1 = 200kPa p3 = 200kPaT3 = ? 末態(tài) 1) ΔH 和 ΔU 只取決于始末態(tài),與中間過程無關(guān)ΔH = n Cp,mΔT = n Cp,m(T3T1) = ΔU = n CV,mΔT = n CV,m(T3T1) = 2) W1 = 設(shè)水蒸氣適用理想氣體狀態(tài)方程式。 n = m/M = 1kg/ ,計(jì)算時(shí)不考慮容器的熱容。 m1(l) = 1kg H2O(s) H2O(l) m2(l) = t2(s) = 0℃t2(l) = 0℃求每生產(chǎn)1kg水蒸氣所需要的熱量。 H2O(g)可逆相變解:由已知溫度的相變焓求未知溫度的相變焓,常壓下對(duì)氣體摩爾焓的影響通??梢院雎?,可直接應(yīng)用p68公式() 應(yīng)用附錄中有關(guān)物質(zhì)在25℃的標(biāo)準(zhǔn)摩爾生成焓的數(shù)據(jù),計(jì)算下列反應(yīng)在25℃時(shí)的和。(3)試由附錄中各化合物的標(biāo)準(zhǔn)摩爾生成焓計(jì)算1000K時(shí)下列反應(yīng)的.解: 應(yīng)用p82公式()得題給反應(yīng)在25℃時(shí)的標(biāo)準(zhǔn)摩爾燃燒焓為:反應(yīng)的 卡諾熱機(jī)在的高溫?zé)嵩春偷牡蜏責(zé)嵩撮g工作。 熱機(jī)效率;(2)解:卡諾熱機(jī)的效率為 今有120 kJ的熱直接從高溫?zé)嵩磦鹘o低溫?zé)嵩矗敶诉^程的。 求下列三種情況下,當(dāng)熱機(jī)從高溫?zé)嵩次鼰釙r(shí),兩熱源的總熵變。 可逆熱機(jī)效率。 不可逆熱機(jī)效率。 不可逆熱機(jī)效率。 因此,上面三種過程的總熵變分別為。 已知水的比定壓熱容。(1)C的熱源接觸。 系統(tǒng)先與55 176。C的熱源接觸至熱平衡,再與100 176。 已知氮(N2, g)的摩爾定壓熱容與溫度的函數(shù)關(guān)系為 程(1)經(jīng)恒壓過程;(2)經(jīng)恒容過程達(dá)到平衡態(tài)時(shí)的。 先絕熱可逆膨脹到使壓力降至100 kPa,再恒壓加熱至。 同理,先絕熱可逆膨脹到使壓力降至100 kPa時(shí)系統(tǒng)的溫度T: 各熱力學(xué)量計(jì)算如下 解:過程圖示如下 先求出末態(tài)的溫度 求過程的。 先確定末態(tài)溫度,絕熱過程,因此 已知水的比定壓熱容。 321今將容器中的絕熱隔板撤去,氣體A與氣體B混合達(dá)到平衡。 解:過程圖示如下 注:對(duì)理想氣體,一種組分的存在不影響另外組分。322一側(cè)容積50 dm3,內(nèi)有200 K的N2(g) 2 mol;另一側(cè)容積為75 dm3, 內(nèi)有500 K的N2(g) 4 mol;N2(g)可認(rèn)為理想氣體。 即,除了隔板外,狀態(tài)2與末態(tài)相同,因此C,比熔化焓,水的比定壓熱熔。求系統(tǒng)達(dá)到平衡后,過程的。 將過程看作恒壓絕熱過程。 只能導(dǎo)致克冰融化,因此 C,摩爾熔化焓, 1176。C的8 mol H2O(s)與2 mol H2O(l)成平衡, 176。 此,過程圖示如下 176。求(1)已知80 176。C間的平均定壓摩爾熱容分別為和 。求過程的。C時(shí),系統(tǒng)中是否存在液態(tài)水。 顯然,只有一部分水蒸發(fā),末態(tài)仍為氣液平衡。 先求80 176。 .C下O2(g)的標(biāo)準(zhǔn)摩爾熵。解:由公式知 式中 .C時(shí)水 蒸氣的標(biāo)準(zhǔn)摩爾生成吉布斯函數(shù)。 .環(huán)境的壓力即系統(tǒng)的壓力維持120 kPa不變。系統(tǒng)終態(tài)H2O(g)的摩爾分?jǐn)?shù)為3/5 = ,因此 kPa,此條件下水的摩爾蒸發(fā)焓。今過飽和蒸氣失穩(wěn),部分凝結(jié)成液態(tài)水達(dá)到熱力學(xué)穩(wěn)定的平衡態(tài)。 解:凝結(jié)蒸氣的物質(zhì)量為 已知液態(tài)水和水蒸氣在100 ~ 120 176。C的1 kg過熱水變成同樣溫度、壓力下的水蒸氣。 已知在100 kPa下水的凝固點(diǎn)為0 176。C 1 kg的過冷水變?yōu)橥瑯訙囟?、壓力下的冰,設(shè)計(jì)可逆途徑,分別按可逆途徑計(jì)算過程的及。聚相的恒溫變壓過程,因此 C, MPa。 若在某溫度范圍內(nèi),一液體及其蒸氣的摩爾定壓熱容均可表示成的形式,則液體的摩爾蒸發(fā)焓為 試應(yīng)用克勞修斯克拉佩龍方程的微分式,推導(dǎo)出該溫度范圍內(nèi)液體的飽和蒸氣壓p的對(duì)數(shù)ln p與熱力學(xué)溫度T的函數(shù)關(guān)系式,積分常數(shù)為I。 氣體,則, (1)C時(shí)的;(2)C時(shí)的;(3)C,若始態(tài)CH4(g)和H2(g)的分壓均為150 kPa,末態(tài)CO(g)和H2(g)的分壓均為50 kPa,求反應(yīng)的。 (2) 試用熱力學(xué)基本方程推導(dǎo)出該反應(yīng)的標(biāo)準(zhǔn)摩爾反應(yīng)吉布斯函數(shù)與溫度T的函數(shù)關(guān)系式。 解:根據(jù)方程熱力學(xué)基本方程 汞Hg在100 176。 (2)若要汞的熔點(diǎn)為35 176。 解:根據(jù)Clapeyron方程,蒸氣壓與熔點(diǎn)間的關(guān)系為 kPa下的正常沸點(diǎn)為100 176。 (2)在此溫度范圍內(nèi)水的摩爾蒸發(fā)焓。(3) 求兩液體具有相同飽和蒸氣壓時(shí)的溫度。 略。 (2) 對(duì)理想氣體 證明:用Jacobi行列式證
點(diǎn)擊復(fù)制文檔內(nèi)容
物理相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1