【總結(jié)】函數(shù)奇偶性練習(xí)題(一)精典例題(1) (2)(3) (4)(4) (6)(7) (8)2.求下列函數(shù)中的參數(shù)(1)若是奇函數(shù),則___(2)設(shè)函數(shù),是偶函數(shù),則實(shí)數(shù)(3)若是偶函數(shù),則可以是(寫出一組),且有,求證:且為偶函數(shù)。,且當(dāng)時,,則的解析式為____,,當(dāng)時,為增
2025-03-26 05:39
【總結(jié)】函數(shù)的奇偶性y=x2-xx當(dāng)x1=1,x2=--1時,f(-1)=f(1)當(dāng)x1=2,x2=--2時,f(-2)=f(2)對任意x,f(-x)=f(x)xy1?偶函數(shù)定義:如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(-x)=f(x)。那么f(x)就叫偶函數(shù)。奇函數(shù)定義:如果對于
2024-11-18 13:34
【總結(jié)】xy0觀察下圖,思考并討論以下問題:(1)這兩個函數(shù)圖象有什么共同特征嗎?(2)相應(yīng)的兩個函數(shù)值對應(yīng)表是如何體現(xiàn)這些特征的?f(-3)=9=f(3)f(-2)=4=f(2)f(-1)=1=f(1)f(-3)=3=f(3)f(-2)=2=f(2)f(-1)=1=f(1)f(x)=x2f(x)
2024-11-17 07:49
【總結(jié)】第一篇:2015年高中數(shù)學(xué)新人教A版必修1(精選) (教學(xué)設(shè)計) 教學(xué)目的:(1)理解函數(shù)的奇偶性及其幾何意義; (2)學(xué)會運(yùn)用函數(shù)圖象理解和研究函數(shù)的性質(zhì);(3)學(xué)會判斷函數(shù)的奇偶性. 教學(xué)...
2024-11-09 12:44
【總結(jié)】第一篇:高中數(shù)學(xué)函數(shù)的基本性質(zhì)2函數(shù)奇偶性的概念教學(xué)案新人教A版必修1 函數(shù)奇偶性的概念 一、教學(xué)目標(biāo): ;; 二、.教學(xué)重點(diǎn):函數(shù)奇偶性的含義及其幾何意義、函數(shù)奇偶性的判斷及應(yīng)用;教學(xué)難點(diǎn):...
2024-10-14 05:14
【總結(jié)】?本節(jié)重點(diǎn):函數(shù)基本知識小結(jié).?本節(jié)難點(diǎn):函數(shù)性質(zhì)的應(yīng)用.1.一次函數(shù)f(x)=kx+b(k≠0),當(dāng)k0時為增函數(shù),k0時為減函數(shù),在閉區(qū)間[m,n]上的兩端點(diǎn)取得最值;二次函數(shù)f(x)=ax2+bx+c(a≠0).a(chǎn)&g
2024-11-09 09:22
【總結(jié)】第一篇:函數(shù)的奇偶性教案(精選) 金太陽新課標(biāo)資源網(wǎng) 函數(shù)的奇偶性(1) 函數(shù)的奇偶性實(shí)質(zhì)就是函數(shù)圖象的對稱性,,一是根據(jù)定義來判斷,,,在“函數(shù)的奇偶性”這一節(jié)中,“數(shù)”與“形”,本節(jié)課沒...
2024-10-28 18:11
【總結(jié)】第一篇:函數(shù)的奇偶性練習(xí)題 函數(shù)的奇偶性習(xí)題課 一、選擇題 1.若f(x)是奇函數(shù),則其圖象關(guān)于() A.x軸對稱B.y軸對稱C.原點(diǎn)對稱 D直線對稱 y=x2.若函數(shù)y=f(x)(x?R...
2024-10-28 18:18
【總結(jié)】正弦、余弦函數(shù)的性質(zhì)X制作:楊同官(奇偶性、單調(diào)性)正弦、余弦函數(shù)的圖像和性質(zhì)y=sinx(x?R)x6?yo-?-12?3?4?5?-2?-3?-4?1?x6?o-?-12?3?4?5?-2?-3?-4?1?yy=cos
2024-11-17 17:25
【總結(jié)】第二章§5第2課時函數(shù)的奇偶性一、選擇題1.下列說法中不正確的是()A.圖像關(guān)于原點(diǎn)成中心對稱的函數(shù)一定是奇函數(shù)B.奇函數(shù)的圖像一定過原點(diǎn)C.偶函數(shù)的圖像若不經(jīng)過原點(diǎn),則它與x軸交點(diǎn)的個數(shù)一定是偶數(shù)個D.圖像關(guān)于y軸呈軸對稱的函數(shù)一定是偶函數(shù)[答案]B[解析]∵奇函數(shù)的圖像不一定過原
2024-11-28 01:54
【總結(jié)】引入課題:f(x)=x2,求f(0),f(-1),f(1),f(-2),f(2),及f(-x),并畫出它的圖象。解:f(-2)=(-2)2=4f(2)=4f(0)=0,f(-1)=(-1)2=1f(1)=1f(-x)=(-x)2=x2f(x)=x3,求f(0),f(-1),f(1)f(-2),f
2024-11-09 05:07
【總結(jié)】(1)函數(shù)的奇偶性【教學(xué)目標(biāo)】;;;【教學(xué)重難點(diǎn)】教學(xué)重點(diǎn):函數(shù)的奇偶性及其幾何意義教學(xué)難點(diǎn):判斷函數(shù)的奇偶性的方法與格式【教學(xué)過程】“對稱”是大自然的一種美,這種“對稱美”在數(shù)學(xué)中也有大量的反映,讓我們看看下列各函數(shù)有什么共性?提出問題①如圖所示,觀察下列函數(shù)的圖象,總結(jié)各
2025-04-16 22:21
【總結(jié)】1.已知函數(shù)對任意,總有,且當(dāng)(1)求證在R上是減函數(shù)(2)求在[-3,3]上的最大值和最小值2.函數(shù)對任意,都有,并且當(dāng)(1)求證在R上是增函數(shù)(2)若3.4.(1)求(2)求證在定義域上是增函數(shù)(3)如果求滿足不等式的x的取值范圍(4)解不等式
2025-03-25 02:32
【總結(jié)】函數(shù)的奇偶性高三備課組1.定義:設(shè)y=f(x),x∈A,如果對于任意x∈A,都有,則稱y=f(x)為偶函數(shù)。設(shè)y=f(x),x∈A,如果對于任意x∈A,都有,則稱y=f(x)為奇函數(shù)。如
2024-11-11 02:54
【總結(jié)】難點(diǎn)8關(guān)于奇偶性與單調(diào)性(二)函數(shù)的單調(diào)性、奇偶性是高考的重點(diǎn)和熱點(diǎn)內(nèi)容之一,,掌握基本方法,形成應(yīng)用意識.●難點(diǎn)磁場(★★★★★)已知偶函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(2)=0,解不等式f[log2(x2+5x+4)]≥0.●案例探究[例1]已知奇函數(shù)f(x)是定義在(-3,3)上的減函數(shù),且滿足不等式f(x-3)+f(x2-3)0,設(shè)不等式解
2025-04-04 05:16