【總結(jié)】稅收發(fā)展史朱門添思考一?歷史是一種記憶?記憶是選擇性的?關(guān)于稅收,我們記住了什么?我們又應(yīng)該記住什么?(一)國家與稅收?公元前1030年,猶太部落長期在沒有中央政府的狀態(tài)下生活?!妒ソ?jīng)》這樣記載,人們要求先知塞繆爾“像所有的國家一樣,給我們一個能統(tǒng)治我們的君主吧”。
2025-05-12 12:47
【總結(jié)】第十講中國精算職業(yè)發(fā)展進(jìn)程回顧《精算學(xué)導(dǎo)論》講義中國精算職業(yè)發(fā)展進(jìn)程回顧?2022年11月10日,中國精算師協(xié)會創(chuàng)始會員大會在北京召開,會議通過了《中國精算師協(xié)會章程》(草案)等文件,標(biāo)志著中國精算職業(yè)已經(jīng)完成了作為一個獨立職業(yè)團(tuán)體的全部籌備工作,隨后,中國精算師協(xié)會正式宣告成立。中國精
2025-05-12 06:29
【總結(jié)】中國物流發(fā)展史一、古代物流西周時期,人們就已經(jīng)意識到了倉儲的重要作用,能夠應(yīng)對意外情況的發(fā)生?!抖Y記?王制》中論述:?國無九年之蓄,曰不足;無六年之蓄,曰急;無三年之蓄,曰國非其國也?。我國古代的國家倉儲形式主要有常平倉、義倉、廣惠倉制等。公元前54年漢宣帝?令邊群皆
2025-01-17 05:28
【總結(jié)】微積分基本定理(79)31、變速直線運動問題變速直線運動中路程為21()dTTvtt?設(shè)某物體作直線運動,已知速度)(tvv?是時間間隔],[21TT上t的一個連續(xù)函數(shù),且0)(?tv,求物體在這段時間內(nèi)所經(jīng)過的路程.另一方面這段路程可表示為)()(12TsTs?原函數(shù)存在
2024-12-08 00:51
【總結(jié)】微積分初步輔導(dǎo)老師:劉丹鳳工作單位:岳陽電大課程的性質(zhì)與任務(wù)《微積分初步》是計算機(jī)和數(shù)控專業(yè)的一門必修的重要基礎(chǔ)課程,通過本課程的學(xué)習(xí),使學(xué)生對一元函數(shù)微分、積分有初步認(rèn)識和了解,使學(xué)生初步掌握微積分的基本知識、基本理論和基本技能,并逐步培養(yǎng)學(xué)生邏輯推理能力、自學(xué)能力,較熟練的運算能力和綜合運用所學(xué)知識分析問題、解決問題的能力
2025-01-19 21:35
【總結(jié)】話說微積分制作人:項晶菁數(shù)學(xué)的核心領(lǐng)域是:?代數(shù)學(xué)——研究數(shù)的理論;?幾何學(xué)——研究形的理論;?分析學(xué)——溝通形與數(shù)且涉及極限運算的部分。?舊三高(高等分析、高等代數(shù)、高等幾何)?數(shù)學(xué)分析權(quán)威R?柯朗所指出的,“微積分乃是一種震撼人心靈的智力奮斗的結(jié)晶”。?現(xiàn)代微積分有時作為“數(shù)學(xué)
2025-01-20 00:10
【總結(jié)】第五章微積分模型例1:(不允許缺貨的存儲模型)設(shè)某廠生產(chǎn)若干種產(chǎn)品,在輪換生產(chǎn)不同的產(chǎn)品時因更換設(shè)備要付生產(chǎn)準(zhǔn)備費(與產(chǎn)品數(shù)量無關(guān)),同一的產(chǎn)量大于需求時因占用倉庫要付存儲費。已知某一產(chǎn)品日需求量為100件,生產(chǎn)準(zhǔn)備費5000元,存儲費每件每日1元,若生產(chǎn)能力遠(yuǎn)大于需求,并且不允許出現(xiàn)缺貨,試安排該產(chǎn)品的生產(chǎn)計劃,即多少天生產(chǎn)一次(生產(chǎn)周期)
2025-04-29 01:24
【總結(jié)】第四章不定積分一、原函數(shù))()(xfxF??或dxxfxdF)()(?稱是的原函數(shù))(xF)(xf二、不定積分CxFdxxf???)()(三、基本性質(zhì)??)()(xfdxxf?????dxxfdxxfd)()(??CxFdxxF????)()(CxFxdF???
2024-11-03 21:17
【總結(jié)】微積分理論數(shù)列的極限函數(shù)的極限微積分線性代數(shù)馮國臣2021/12/12定義如果對于任意給定的正數(shù)?(不論它多么小),總存在正數(shù)N,使得對于Nn?時的一切nx,不等式???axn都成立,那末就稱常數(shù)a是數(shù)列nx的極限,或者稱數(shù)列nx收斂于a,記為
【總結(jié)】如果先讓烏龜爬行一段路后,再讓劉翔去追,那么劉翔是永遠(yuǎn)也追不上烏龜?shù)摹?、談?wù)剟⑾枧c烏龜賽跑的問題理由:劉翔追上烏龜之前,必須先到達(dá)烏龜?shù)某霭l(fā)點,而這段時間內(nèi),烏龜又向前爬行了一段路,于是劉翔必須趕上這段路,于是烏龜又向前爬行了一路。。。,如此分析下去,劉翔離烏龜越來越近,但卻是永遠(yuǎn)也追不上烏龜。破解悖論
2025-01-04 08:27
【總結(jié)】韓淑霞公共郵箱:,Key:135246私人郵箱:請每個小班的數(shù)學(xué)課代表將電話號碼給我電話:153271419031.分析基礎(chǔ):函數(shù),極限,連續(xù)2.微積分學(xué):一元微積分(上冊)(下冊)3.向量代數(shù)與空間解析幾何4.無窮級數(shù)
2025-05-03 23:22
【總結(jié)】第五節(jié)機(jī)動目錄上頁下頁返回結(jié)束對坐標(biāo)的曲面積分一、基本概念觀察以下曲面的側(cè)(假設(shè)曲面是光滑的)曲面分上側(cè)和下側(cè)曲面分內(nèi)側(cè)和外側(cè)曲面法向量的指向決定曲面的側(cè).決定了側(cè)的曲面稱為有向曲面.曲面的投影問題:面在xoyS?,在有向曲面Σ上取一小塊
2024-12-08 05:11
【總結(jié)】變速直線運動中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運動中路程為?21)(TTdttv設(shè)某物體作直線運動,已知速度)(tvv?是時間間隔],[21TT上t的一個連續(xù)函數(shù),且0)(?tv,求物體在這段時間內(nèi)所經(jīng)過的路程.另一方面這段路程可表示為)()(12TsTs?第六節(jié)微積分基本定理一、問題
2025-07-22 11:18
【總結(jié)】Alibaba—通往財富之門招生四組2022年3月目錄一、阿里巴巴集團(tuán)概況二、阿里巴巴為何能取得巨大成功四、我們在路上三、阿里巴巴所產(chǎn)生的經(jīng)濟(jì)價值一、阿里巴巴集團(tuán)概況1、馬于2、電子商務(wù)3、關(guān)亍阿里巴巴馬云,浙江省杭州市人,阿里巴巴集團(tuán)主要創(chuàng)始人之一?,F(xiàn)仸
2025-05-07 22:16
【總結(jié)】工業(yè)革命前工業(yè)革命時期第二次工業(yè)革命時期1917年—二戰(zhàn)二戰(zhàn)后到今3工業(yè)革命前14世紀(jì)20年代,法國人民遭遇黑死病,2022萬左右人口下降至1200萬甚至更少,沖擊了人們的精神和宗教信仰。14,15世紀(jì)的法國,經(jīng)歷了百年戰(zhàn)爭,法蘭西王國徒有王國的稱謂。16世紀(jì)早期開始了宗教之間的戰(zhàn)爭,貴族的
2025-05-12 12:22