freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

理科數(shù)學第二章第一節(jié)-wenkub

2023-01-31 10:34:01 本頁面
 

【正文】 函數(shù) y= 10lg(x- 1)的圖象相同的函數(shù)是 ( ) A. y= B. y= x- 1 C. y= |x- 1| D. y= 解析: ∵ y= 10lg(x- 1)= x- 1(x1), y= = x-1(x1), ∴ y= 10lg(x- 1)與 y= 是同一個函數(shù),它們的圖象相同.故選 A. 答案: A 2????????x1x1 2??x1x12????????x1x12????????x1x12. (2022揭陽一中、潮州金山中學聯(lián)考 )設 f(x)= 則 f(6)= ( ) A. 8 B. 7 C. 6 D. 5 ????? x - 3 , x ≥ 10 ,f [ f ? x + 5 ? ] , x < 10 , 解析: f(6)= f(f(11))= f(8)= f(f(13))= f(10)= 7.故選 B. 答案: B 3. (2022北京市海淀區(qū)檢測 )設 M= {x|2≤x≤2}, N= {y|0≤y≤2},函數(shù) f(x)的定義域為 M,值域為 N,則 f(x)的圖象可以是 ( ) 解析: A項定義域為 [- 2,0]。深圳市松崗中學模擬 )函數(shù) y= 的定義域為 ________. log 12 01 2 ? x - 3 ? 解析: ≥0? 0x- 3≤1? 3x≤4, ∴ 函數(shù)定義域為 (3,4]. 答案: (3,4] 12022l o g ( 3 )x ?【 例 4】 (1)已知 f(x)的定義域是 [0,4],則 f(x2)的定義域為__________, f(x+ 1)+ f(x- 1)的定義域為 ________________. (2)已知 f(x2)的定義域為 [0,4],則 f(x)的定義域為 _______. 思路點撥: 函數(shù) f(x)的定義域為 [a, b],則函數(shù) f(g(x))的定義域由不等式 a≤g(x)≤b解出. 解析: (1)∵ f(x)的定義域為 [0,4], 又 f(x2)以 x2為自變量, ∴ 0≤x2≤4.∴ - 2≤x≤2. 故 f(x2)的定義域為 [- 2,2]. ∵ f(x+ 1)+ f(x- 1)以 x+ 1, x- 1為自變量,于是有 ∴ 1≤x≤3. 故 f(x+ 1)+ f(x- 1)的定義域為 [1,3]. (2)∵ f(x2)的定義域為 [0,4], ∴ 0≤x≤4. ∴ 0≤x2≤16,故 f(x)的定義域為 [0,16]. 答案: (1)[- 2,2] [1,3] (2)[0,16] ,? ? ???? ? ??0 x 1 40 x 1 4變式探究 y= f(x)的定義域為 ,則 f(log2x)的定義域為 _______________. ,??????1 22? ?| ??x 2 x 4考點三 求函數(shù)的解析式 【 例 5】 (1)已知 f(x)是一次函數(shù),且滿足 3f(x+ 1)- 2f(x-1)= 2x+ 17,求 f(x). (2)若 ,求函數(shù) f(x)的解析式. (3)已知 f(x)+ 2f(- x)= 3x- 2,求 f(x)的解析式. f ??? ???x - 1x = x 2 + 1x 2 解析: (1)設 f(x)= ax+ b(a≠0),則 3f(x+ 1)- 2f(x- 1)= 3ax+ 3a+ 3b- 2ax+ 2a- 2b= ax+ b+5a= 2x+ 17, ∴ a= 2, b= 7.∴ f(x)= 2x+ 7. (2) ,用 x代換 x- 得 f(x)= x2+2,即為所求的函數(shù) f(x)的解析式. (3)以- x代 x后所得等式與原等式組成方程組 解得 f(x)=- 3x- . 點評 : (1)題已知 f(x)為一次函數(shù),可用待定系數(shù)法; (2)題用配湊法; (3)題用方程組法. f ??? ???x - 1x = x 2 + 1x 2 = ??? ???x - 1x 2 + 2 1x????? f ? x ?+ 2 f ?- x
點擊復制文檔內容
教學教案相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1