freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

證券投資的基本分析(2)-wenkub

2023-05-19 23:23:13 本頁面
 

【正文】 中國小康標(biāo)準(zhǔn)的量值體系 指標(biāo) 單位 小康標(biāo)準(zhǔn) 人均國民生產(chǎn)總值 元 2400 第三產(chǎn)業(yè)比重 % 36 貧困人口比重 % 5 人均住房面積 平方米 平均期望壽命 歲 70 人均蛋白質(zhì) 克 /日 75 恩格爾系數(shù) % 48 文化教育、服務(wù)消費比重 % 16 第三節(jié) 平均指標(biāo) 算術(shù)平均數(shù) 、 調(diào)和平均數(shù) 、 幾何平均數(shù) 、眾數(shù) 、 中位數(shù) 、 四分位數(shù) 某班 “ 統(tǒng)計學(xué) ” 期末考試成績表 序號 1 2 3 4 5 6 7 8 9 10 分?jǐn)?shù) 88 76 68 60 72 85 75 90 56 92 序號 11 12 13 14 15 16 17 18 19 20 分?jǐn)?shù) 95 80 86 82 70 98 77 83 65 74 數(shù)據(jù)分布的特征 ? 集中趨勢: 一組數(shù)據(jù)向其中心值靠攏的傾向和程度, 測度集中趨勢就是尋找數(shù)據(jù)一般水平的代表值或中心值。 七、強度相對數(shù) 某一指標(biāo)數(shù)值 概念 兩個性質(zhì)不同 , 但有聯(lián)系的總量指標(biāo)之比 。 有的指標(biāo)值越高越好 , 大于 100%為超額完成任務(wù); 有的指標(biāo)值越低越好 , 小于 100%為超額完成任務(wù) 。 五、動態(tài)相對數(shù) 某一時間 條件下某一指標(biāo)數(shù)值 另一時間 條件下同一指標(biāo)數(shù)值 概念 公式 同類指標(biāo) 在兩個 不同時間 上的數(shù)值之比 動態(tài)相對數(shù) = ( 1) 說明同一現(xiàn)象在不同時間上的發(fā)展變化程度 ( 2) 它一般用百分?jǐn)?shù)或倍數(shù)表示 ( 3) 將作為比較基礎(chǔ)的時期的指標(biāo)數(shù)值叫做 基期 指標(biāo)數(shù)值 , 而把同基期對比的時期稱為 報告期 或計算期 ( 4) 分子分母不能互換 特點 我國 1997年和 1998年農(nóng)村居民家庭人均純收入分別為 元 , 則計算動態(tài)相對指標(biāo)為 %, 表明 1998年我國農(nóng)村居民家庭人均純收入與 1997年相比增長了 %。 如國內(nèi)生產(chǎn)總值中三次產(chǎn)業(yè)比例等 。 (4) 將不能直接對比的統(tǒng)計指標(biāo)通過計算相對指標(biāo)取得對比的基礎(chǔ) 。 ( 人口數(shù) 、 儲蓄存款余額 、 商品庫存量 、 在校學(xué)生總數(shù) ) 種類 第二節(jié) 相對指標(biāo) 結(jié)構(gòu)相對數(shù) 比例相對數(shù) 比較相對數(shù) 動態(tài)相對數(shù) 計劃完成相對數(shù) 強度相對數(shù) 一、相對指標(biāo) (概念、表現(xiàn)形式) 概念 兩個有聯(lián)系的指標(biāo)數(shù)值之比 , 反映現(xiàn)象內(nèi)部和現(xiàn)象之間的 數(shù)量對比 關(guān)系 。第三章 綜合指標(biāo) ? 總量指標(biāo) ——總體總量的描述 ? 相對指標(biāo) ——總體的結(jié)構(gòu)和對比 ? 平均指標(biāo) ——總體的集中分布趨勢 ? 變異指標(biāo) ——總體的離散分布特征 ? 偏度和峰度 ——總體的分布形狀 國家統(tǒng)計局 2021年的數(shù)據(jù) —— 浙江城鎮(zhèn)居民收入水平連續(xù) 7年居全國前列 武漢農(nóng)村居民生活消費城市化趨勢愈加明顯 2021年終經(jīng)濟(jì)述評:中國百姓的腰包越來越鼓 據(jù) 2021年山西省人口變動抽樣調(diào)查顯示 , 全年全省出生人口 人 , 人口出生率為 ‰ , 比上年降低 ;死亡人口 , 死亡率為 ‰ , 比上年降低 ;全年凈增人口 , 自然增長率為 ‰ , 比上年降低 ,如表所示: 指標(biāo) 年末數(shù)(萬人) 比重( %) 全省總?cè)丝? 其中:城鎮(zhèn) 鄉(xiāng)村 其中:男性 女性 其中: 014歲 1564歲 65歲以上 第一節(jié) 總量指標(biāo) 反映一定時間地點條件下 , 某種社會經(jīng)濟(jì)現(xiàn)象總體的規(guī)?;蚩偭克降慕y(tǒng)計指標(biāo) 。 相對指標(biāo)一般以相對數(shù)的形式表示 , 又稱相對數(shù) 。 銷售額(萬元) 利潤額(萬元) 銷售利潤率( %) 甲廠 1200 120 10 乙廠 500 70 14 ? 結(jié)構(gòu)相對數(shù) ? 比例相對數(shù) ? 比較相對數(shù) ? 動態(tài)相對數(shù) ? 計劃完成相對數(shù) ? 強度相對數(shù) 種類 二、 結(jié)構(gòu)相對數(shù) (部分 /總體) 總體 某部分 數(shù)值 總體 全部 數(shù)值 概念 ?在統(tǒng)計分組的基礎(chǔ)上計算某部分?jǐn)?shù)值與總體數(shù)值的比重 公式 ?結(jié)構(gòu)相對數(shù) = ( 1) 反映總體內(nèi)部構(gòu)成及變化 ( 2) 以分組為前提 ( 3) 用無名數(shù)表示: %、 系數(shù) 、 成數(shù)等 ( 4) 各組結(jié)構(gòu)相對數(shù)之和等于 1或 100% ( 5) 分子分母不能互換 特點 人員分類 人數(shù)(人) 比重( %) 教師 行政管理人員 工人 450 300 150 合計 900 ?例:某高校按工作崗位分組的人員分布及其結(jié)構(gòu)相對指標(biāo)如下: ?瑞典人口統(tǒng)計學(xué)家桑德巴根據(jù)人口的年齡構(gòu)成 , 將人口分成以下三個類型 : 014歲 1549歲 50歲以上 增加型( %) 穩(wěn)定型( %) 減少型( %) 40 20 50 50 10 23 30 三、比例相對數(shù) (部分 /部分) 總體中 某部分 數(shù)值 總體中 另一部分 數(shù)值 概念 在分組的基礎(chǔ)上計算總體中某一部分的數(shù)值與另一部分的數(shù)值之比 , 反映總體內(nèi)部各組成部分間的對比關(guān)系 。 2021年 8月 15日中國國家人口和計劃生育委員會宣布啟動一項 “ 關(guān)愛女孩行動 ” , 旨在通過倡導(dǎo)男女平等思想 , 扭轉(zhuǎn)中國 、 特別是農(nóng)村貧困地區(qū)存在的新生兒男女性別比失衡問題 。 2021年 1月 ——6月我國社會消費品零售總額 12418億元 , 上年同期為 10808億元 ,是上年的 %, 實際增長 % 六、 計劃完成相對數(shù) 概念 公式 現(xiàn)象在一定時期內(nèi)實際完成數(shù)與計劃任務(wù)數(shù)之比 。 ( 3) 分子分母不能互換 , 可同時是總量指標(biāo) 、 相對指標(biāo) 、 平均指標(biāo) 。 用來說明社會經(jīng)濟(jì)現(xiàn)象強度 、 密度和普遍程度 。 ? 離中趨勢: 其測度值是對數(shù)據(jù)離散程度所作的描述。 ( 橫向 ) ( 2) 同一現(xiàn)象總體在不同時間上的平均指標(biāo)可以反映現(xiàn)象總體的發(fā)展變化趨勢或規(guī)律性 。 這說明了什么問題 ? 一、平均指標(biāo) (算術(shù)平均數(shù)) 總體單位總數(shù)總體標(biāo)志總量算術(shù)平均數(shù) ? 基本計算公式: 具體計算公式: ( 1)簡單算術(shù)平均數(shù)(不分組資料): 設(shè)一組數(shù)據(jù)為: x1 , x2 , … , xn nxnxxxx n ?????? ?21( 2)加權(quán)算術(shù)平均數(shù)(分組資料): 設(shè)分組后的數(shù)據(jù)為: x1 , x2 , … , xk 相應(yīng)的頻數(shù)為: f1 , f2, … , fk ??????????fxfffffxfxfxxnnn??212211加權(quán)平均數(shù) (權(quán)數(shù)對均值的影響 ) ? 甲乙兩組各有 10名學(xué)生 , 他們的考試成績及其分布數(shù)據(jù)如下 ? 甲組: 考試成績( X ) : 0 20 100 ? 人數(shù)分布( F ): 1 1 8 ? 乙組: 考試成績( X ) : 0 20 100 ? 人數(shù)分布( F ): 8 1 1 X甲 0 1+20 1+100 8 n ? ? 10 i=1 ? xif ? 82(分) X乙 0 8+20 1+100 1 n ? ? 10 i=1 ? xif ? 12(分) 幾點注意: ? ( 1) 影響算術(shù)平均數(shù)大小的因素有二: ? 變量值 x的大小 , 變量值越大 , 平均數(shù)越大 ? 各組次數(shù) , 但非次數(shù)絕對數(shù) , 而是次數(shù)的相對數(shù) , 次數(shù)結(jié)構(gòu)或比重 、 頻率 (f/∑f) ? ( 2) 加權(quán)算術(shù)平均數(shù)偏向于頻率大的變量值 ,頻率大的標(biāo)志值大 , 算術(shù)平均數(shù)也大 , 頻率大的標(biāo)志值小 , 算術(shù)平均數(shù)就小 。 常用的是加權(quán)式 。 原來只是計算時使用了不同的數(shù)據(jù) ! ???? ? ? ??iiiiiiiiffXXfXfXH適用 例:某農(nóng)貿(mào)市場某種蔬菜價格早市 /斤 , 午市 /斤 , 晚市 /斤 。 多用于計算平均比率 、 平均速度 。 只有當(dāng)總體單位數(shù)比較多,且標(biāo)志值的分布具有明顯的集中趨勢時,眾數(shù) 的確定才有意義,如果標(biāo)志值的分布呈均勻分布,該數(shù)列無眾數(shù)。 眾數(shù)的計算公式 (算例見課本 64頁) dUMdLM??????????????21202110上限公式:下限公式:?其中: L —— 表示眾數(shù)組的下限 U —— 表示眾數(shù)組的上限 △ 1 —— 眾數(shù)組次數(shù)與前一組次數(shù)之差 △ 2 —— 眾數(shù)組次數(shù)與后一組次數(shù)之差 d —— 表示眾數(shù)所在組的組距 五、平均指標(biāo) (中位數(shù)) Me 50% 50% 概念 適用 在有序數(shù)列中 , 處于中間位置的變量值 中位數(shù)不受數(shù)列中極端標(biāo)志值的影響 ,在總體標(biāo)志值差異很大的情況下 , 中位數(shù)具有較強的代表性 , 可用中位數(shù)代表數(shù)列的一般水平 。 組距數(shù)列中位數(shù)公式的推導(dǎo): 累 計 d 次 x y 數(shù) f m S m 1 ∑ f 2 L M e U 標(biāo)志值 組距數(shù)列中位數(shù)的計算公式 dfSfUMdfSfLMmmemme????????????1122上限公式:下限公式:其中: L——中位數(shù)組下限 U ——中位數(shù)組上限 Sm1 —— 中位數(shù)組以前各組的累計次數(shù) Sm+1 —— 中位數(shù)組以后各組的累計次數(shù) fm ——中位數(shù)組的次數(shù) d ——中位數(shù)組的組距 例如,某企業(yè)職工月工資資料如下表: 累計次數(shù) 月 工 資額 (元) 職工人數(shù) (人) 較小制累計 較大制累計 1500 以下 10 10 100 1500 ~ 1600 16 26 90 1600 ~ 1700 35 61 74 1700 ~ 1800 21 82 39 1800 ~ 1900 11 93 18 1900 以上 7 100 7 計算方法 35395017001002/35265016001002/11??????????????????????mmemmefsfUMfsfLM 中位數(shù)的位次: ∑f/2=100/2=50 確定中位數(shù)組: 1600—— 1700 應(yīng)用計算公式: 平均數(shù)、中位數(shù)和眾數(shù)的特點和優(yōu)缺點 ? 在中央電視臺舉辦的一次全國業(yè)務(wù)通俗歌手大賽中,假定 11名裁判對某位歌手的評分按順序排列是: ? 初賽: , , , , , , , , , 眾數(shù) =,中位數(shù) =,平均數(shù) = ? 復(fù)賽: , , , , , , , , , 眾數(shù) =,中位數(shù) =,平均數(shù) = 粗心: , , , , , , , , , ?不存在極端值 ——平均數(shù) ?存在極端值 ——中位數(shù) ?眾數(shù)在很多情況下很方便 ( 了解最受歡迎的主持人 ) 算術(shù)平均數(shù) 應(yīng)用最廣泛的一種平均數(shù) 調(diào)和平均數(shù) 算術(shù)平均數(shù)的轉(zhuǎn)化形式,用的較少
點擊復(fù)制文檔內(nèi)容
高考資料相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1