【正文】
equipment and ingenuity have enabled the construction of tunnels to be far less laborious than hitherto. In applying the method known as the “ Berlin Building System” , firstly, the open excavation is taken down to a depth of between 13 12 and 25 meters. The sides of the excavation are supported by lines of driven steel, piles, as used during the excavation for a fourtrack underground station in Hamburg. Generally, this type of preliminary construction is also required to carry temporary bridges for both vehicles and pedestrians. Alternative methods to that show in , for supporting open excavations, are often employed. For example, steel sheet piling and the more modern methods of either “ BenotoVeder” pile walling or “ ” diaphragm reinforced concrete walling are all in mon use today, because in each no lateral supports are necessary. The “ BenotoVeder” pile walling consists of concrete piles accurately interlocked one with the other to form a plete vertical support the excavation. The use of bentonite mud is the basis of the “ ” process. As the deep trench is being excavated by means of a special grab operated by an electricpowered winch, the mud is poured in. In this way, the excavation is stabilized and held open until the diaphragm walling has been placed in position in the trench. The steel reinforcement is then prefabricated is placed around the reinforcement by crane into position through the bentonite mud. Finally, the concrete is placed around the reinforcement by tremie and the “ slurry” is displaced as the 14 concrete rises to fill the trench. The diaphragm walling is usually cast in sections not exceeding 6 meters in length. Vertical construction joints between sections are formed by temporarily placing a steel pipe, having an outside diameter equal to the width of walling, in the trench at the end of each section. The pipe acts as end shuttering for the concrete, and on being removed, the halfround end on one section allows a neat and fairly watertight joint to be made with the next section. The span between two such diaphragm walls can easily be bridged with precast reinforced concrete beams or a cast insitu reinforced concrete slab to plete the main shell of the tunnel. illustrates the “ ” process for the construction of a diaphragm wall. 二、 翻譯結(jié)果 交通隧道施工 每當(dāng) 計(jì)劃 中的公路或鐵路被一個山坡所堵塞 , ,設(shè)計(jì)工程師必須決定是否 構(gòu)建一條水路或者別的施工方案 , 又或者是修一條穿過它的隧道 , 或者是將路修在障礙的 上 面 。 (5) 橋梁的剩余承載能力和結(jié)構(gòu)系統(tǒng)可靠度的研究。 (1) 橋梁健康監(jiān)測系統(tǒng)的智能控制技術(shù)。橋梁結(jié)構(gòu)荷載中 , 恒載占相當(dāng)大的比例 (70%~ 80% 以上 ) , 若僅著眼了整個結(jié)構(gòu)的動力監(jiān)測 , 而缺乏對恒載量值、分布及變化的了解 , 勢必使反映結(jié)構(gòu)狀態(tài)的指紋變化淹沒于恒載應(yīng)力變化之中而失去意義。 (4) 結(jié)構(gòu)系統(tǒng)的復(fù)雜性 , 增加了系統(tǒng)評估的難度。 (2) 缺乏有效的傳感器優(yōu)化布設(shè)算法 , 盡管此問題在軌道航天器的動態(tài)控制與 8 系統(tǒng)認(rèn)識中得到了廣泛研究 , 但是橋梁模態(tài)試驗(yàn)中的應(yīng)用還存在不少的難點(diǎn) , 如怎樣在含噪聲的環(huán)境中 , 利用盡可能少的傳感器獲取全面、精確的結(jié)構(gòu)參數(shù)信息 。 (4) 在一定程度上能夠利用測試的數(shù)據(jù)進(jìn)行計(jì)算模型的修正。 二、相關(guān)研究的最新成果及動態(tài) 橋梁健康監(jiān)測的進(jìn)展?fàn)顩r 基于結(jié)果系統(tǒng)識別、振動理論、振動測試技術(shù)、信號采集與分析等跨學(xué)科技術(shù)的試驗(yàn)?zāi)B(tài)分析法 ,國內(nèi)外目前在橋梁健康監(jiān)測領(lǐng)域的試驗(yàn)與研究中取得的進(jìn)展有以下幾個方面 [ 3 ]。該地區(qū)地形平坦,起伏不大,該橋梁必定會存在高填陡坡及橋涵等。講究經(jīng)濟(jì)效益 ,力圖降低造價 。橋體內(nèi)的傳感器可測出大橋各部位的危險(xiǎn)及潛在故障 , 并及時發(fā)出警報(bào)。從 20 世紀(jì) 90 年代中期起 ,我國開始規(guī)劃超長的跨海橋梁工程 .2021 年 6 月 ,寧潑杭州灣跨海大橋開始動工 ,已于 2021 年通車(預(yù)計(jì) 2021 年建成通車 )2021年 6 月 ,東??绾4髽蜷_工建設(shè) .該橋是上海國際航運(yùn)中心洋深水港區(qū)一期工程的重要配套工程 .全長約為 2021年底建成通車 .國外也