【總結(jié)】官方網(wǎng)站:相似三角形及其性質(zhì)一、課堂講解知識點1、三角對應相等,三邊對應成比例的三角形叫相似三角形。如△ABC與△A/B/C/相似,記作:△ABC∽△A/B/C/。相似三角形的比叫相似比相似三角形的定義既是相似三角形的性質(zhì),也是三角形相似的判定方法。注意
2025-04-17 07:51
【總結(jié)】......個性化輔導授課案教師:盧天明學生:時間2016年月日時段相似三角形的判定教學目
2025-04-17 07:43
【總結(jié)】......【一】知識梳理【1】比例①定義:四個量a,b,c,d中,其中兩個量的比等于另兩個量的比,那么這四個量成比例②形式:a:b=c:d,③性質(zhì):基本性質(zhì):ac=bd1、可以把比例式與等積式互
2025-03-25 06:30
【總結(jié)】三角形滬教版三年級數(shù)學上冊學習目標。,發(fā)現(xiàn)等腰三角形和等邊三角形的部分特征。三角形是由三條線段圍成的圖形。325416325416我喜歡等邊三角形!我喜歡等腰三角形!等邊三角形是特殊的等腰三角形。三角形按邊分類圖示不等邊三角形等腰三角形
2024-12-11 07:21
【總結(jié)】問題1:相似三角形的有關概念(1).三個角對應_____、三條邊對應_______的兩個三角形叫做相似三角形(2).相似三角形的對應角_____,對應邊________.(3).相似比等于____的兩個三角形全等.相等成比例相等成比例1一、復習提問相似三角形的識別問:除定義之外,相似
2024-11-24 13:48
【總結(jié)】1.如圖,在△ABC中,D是BC上一點,E是AD上一點,且=,∠BAD=∠ACE.(1)求證:AC2=BC·CD;(2)若E是△ABC的重心,求的值.2.已知△ABC中,AB=AC=5,BC=8,點D在BC邊上移動,連接AD,將△ADC沿直線AD翻折,點C的對應點為C1.(1)當AC1⊥BC時,CD的長是多少?(2)設C
2025-03-25 06:32
【總結(jié)】相似三角形的判定定理:定理1:兩角對應相等,兩三角形相似。定理2:兩邊對應成比例且夾角相等,兩三角形相似。定理3:三邊對應成比例,兩三角形相似?!螦=∠A'∠B=∠B'△ABC∽△A'B'C'??△ABC∽△A'B'C'△ABC∽
2024-11-09 05:43
【總結(jié)】相似三角形說課稿各位評委,各位老師:大家好,我是趙勇連。今天我講的內(nèi)容是義務教育課程標準實驗教科書北師大版八年級下冊第四章第5節(jié)《相似三角形》。我將從五個方面進行我的說課。一、教材分析(一)、教材所處的地位和作用:《相似三角形?》是義務教育課程標準實驗教科書北師大版八年級下冊第四章第5節(jié)內(nèi)容。在此之前,學生已學習了線段的比,形狀相同的圖形及相似多邊形
2024-08-29 19:21
【總結(jié)】一、下列各題有“病”嗎?如果有“病”,請寫出“病因”,沒有解答的,請你解答,并寫出你認為易讓別人犯錯的“陷阱”在哪兒?1:如圖1,要ΔADB∽ΔABC,那么還應增加的條件是_________.ACBD2:已知:如圖2,在□ABCD中,點E為邊CD上的一點,AE的延長線交BC的延長線于點F,請你寫出圖中的
2024-11-24 14:14
【總結(jié)】相似三角形x是6、3、2的第四比例項,則x=_____;若2:(a-3)=(a-3):8,則a=________.:2x-5y=0,則x:y=_____;._______;????yxyyyx:AD∥BE∥CF,則=;=;=
2024-11-10 22:11
【總結(jié)】相似三角形相似三角形?相似三角形的概念?相似三角形的基本性質(zhì)?相似三角形的預備定理兩幅形狀相同大小不等的長城的圖片是相似的。ABCDEF△ABC與△DEF三個角對應相等,三條邊對應成比例的兩個三角形,做相似三角形(similartrianglec)AB
【總結(jié)】相似三角形復習(2)△ABC中,P是AB上一點,連接CP,以下條件不能判定△ACP∽△ABC的是()A∠ACP=∠BB∠APC=∠ACBCAC2=AP·ABDAC:CP=AB:BCABCP2、如圖,D、E分別是AB、AC上兩點,CD與BE相
2024-11-09 12:54
【總結(jié)】......相似三角形綜合培優(yōu)題型基礎知識點梳理:知識點1有關相似形的概念(1)形狀相同的圖形叫相似圖形,在相似多邊形中,最簡單的是相似三角形.(2)如果兩個邊數(shù)相同的多邊形的對應角相等,
2025-06-25 00:16
【總結(jié)】九、如下圖,△ABC中,AD∥BC,連結(jié)CD交AB于E,且AE∶EB=1∶3,過E作EF∥BC,交AC于F,S△ADE=2cm2,求S△BCE,S△AEF.十一、下圖中,E為平行四邊形ABCD的對角線AC上一點,AE∶EC=1∶3,BE的延長線交CD的延長線于G,交AD于F,求證:BF∶FG=1∶2. 26.(2010年長沙)如圖,在平面直角坐標系中,矩形OABC的兩邊分別在x軸和y
2025-03-25 06:31
【總結(jié)】第一篇:相似三角形復習教案 設計意圖: 1、通過學生對一道中考題的解答,讓學生認識到有時利用相似三角形解決問題較簡便。 2、以小題目的形式來回顧梳理相似三角形的基本圖形,并重點得到“三垂直型”;...
2024-11-19 02:19