freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

完全平方公式教案2(已修改)

2024-11-04 22:29 本頁(yè)面
 

【正文】 第一篇:完全平方公式教案2完全平方公式教案2 更多精品源自 3 e d u 課件 教學(xué)過(guò)程Ⅰ.提出問(wèn)題,創(chuàng)設(shè)情境[師]請(qǐng)同學(xué)們完成下列運(yùn)算并回憶去括號(hào)法則.(1)4+(5+2)(2)4(5+2)(3)a+(b+c)(4)a(bc)[生]解:(1)4+(5+2)=4+5+2=11(2)4(5+2)=452=3 或:4(5+2)=47=3(3)a+(b+c)=a+b+c(4)a(bc)=ab+c 去括號(hào)法則: 去括號(hào)時(shí),如果括號(hào)前是正號(hào),去掉括號(hào)后,括號(hào)里的每一項(xiàng)都不改變符合。如果括號(hào)前是負(fù)號(hào),去掉括號(hào)后,遇“加”不變,遇“減”都變.[師]∵4+5+2與4+(5+2)的值相等。452與4(5+2):(1)4+5+2=4+(5+2)(2)452=4(5+2)左邊沒(méi)括號(hào),右邊有括號(hào),也就是添了括號(hào),?同學(xué)們可不可以總結(jié)出添括號(hào)法則來(lái)呢?(學(xué)生分組討論,最后總結(jié))[生]添括號(hào)其實(shí)就是把去括號(hào)反過(guò)來(lái),所以添括號(hào)法則是: 添括號(hào)時(shí),如果括號(hào)前面是正號(hào),括到括號(hào)里的各項(xiàng)都不變符號(hào)。?如果括號(hào)前面是負(fù)號(hào),:遇“加”不變,遇“減”都變.[師]能舉例說(shuō)明嗎? [生]例如a+bc,要對(duì)+bc項(xiàng)添括號(hào),可以讓a先休息,括號(hào)前添加號(hào),括號(hào)里的每項(xiàng)都不改變符號(hào),也就是+(+bc),括號(hào)里的第一項(xiàng)若系數(shù)為正數(shù)可省略正號(hào)即+(bc),于是得:a+bc=a+(bc)。若括號(hào)前添減號(hào),括號(hào)里的每一項(xiàng)都改變符號(hào),+b改為b,c改為+(b+c),于是得a+bc=a(b+c).添加括號(hào)后,無(wú)論括號(hào)前是正還是負(fù),都不改變代數(shù)式的值.[師]你說(shuō)得很有條理,:(出示投影片):(1)a+bc=a+()(2)ab+c=a()(3)abc=a()(4)a+b+c=a().(1)2ab=2a(b)(2)m3n+2ab=m+(3n+2ab)(3)2x3y+2=(2x+3y2)(4)a2b4c+5=(a2b)(4c+5)(學(xué)生嘗試或獨(dú)立完成,及時(shí)發(fā)現(xiàn)問(wèn)題,并幫助個(gè)別有困難的同學(xué))總結(jié):添括號(hào)法則是去括號(hào)法則反過(guò)來(lái)得到的,無(wú)論是添括號(hào),還是去括號(hào),運(yùn)算前后代數(shù)式的值都保持不變,?所以我們可以用去括號(hào)法則驗(yàn)證所添括號(hào)后的代數(shù)式是否正確.Ⅱ.導(dǎo)入新課[師]有些整式相乘需要先作適當(dāng)?shù)淖冃?然后再用公式,完成下列計(jì)算.(出示投影片)例:運(yùn)用乘法公式計(jì)算(1)(x+2y3)(x2y+3)(2)(a+b+c)2(3)(x+3)2x2(4)(x+5)2(x2)(x3)(讓學(xué)生充分討論,鼓勵(lì)學(xué)生用多種方法運(yùn)算,從而達(dá)到靈活應(yīng)用公式的目的)分析:(1)是每個(gè)因式都是三項(xiàng)和的整式乘法,?我們可以用添括號(hào)法則將每個(gè)因式變?yōu)閮身?xiàng)的和,再觀察到2y3與2y+3是相反數(shù),所以應(yīng)在2y3和2y+3項(xiàng)添括號(hào),?以便利用乘法公式,達(dá)到簡(jiǎn)化運(yùn)算的目的.(2)是一個(gè)完全平方的形式,只須將a+b+c中任意兩項(xiàng)結(jié)合添加括號(hào)變?yōu)閮身?xiàng)和,便可應(yīng)用完全平方公式進(jìn)行運(yùn)算.(3)是完全平方公式計(jì)算,也可以逆用平方差公式計(jì)算.(4)完全平方公式計(jì)算與多項(xiàng)式乘法計(jì)算,但要注意運(yùn)算順序,?減號(hào)后面的積算出來(lái)一定先放在括號(hào)里,然后再用去括號(hào)法則進(jìn)行計(jì)算,這樣就可以避免符號(hào)上出現(xiàn)錯(cuò)誤.Ⅲ.隨堂練習(xí)─3.Ⅳ.課時(shí)小結(jié)通過(guò)本節(jié)課的學(xué)習(xí),你有何收獲和體會(huì)? [生]我們學(xué)會(huì)了去括號(hào)法則和添括號(hào)法則,利用添括號(hào)法則可以將整式變形,從而靈活利用乘法公式進(jìn)行計(jì)算.[生]我體會(huì)到了轉(zhuǎn)化思想的重要作用,?學(xué)數(shù)學(xué)其實(shí)是不斷地利用轉(zhuǎn)化得到新知識(shí),比如由繁到簡(jiǎn)的轉(zhuǎn)化,由難到易的轉(zhuǎn)化,由已知解決未知的轉(zhuǎn)化等等.[師],一定會(huì)有更多發(fā)現(xiàn).Ⅴ.課后作業(yè)─ 3 e d u 課件平方差公式教案文章來(lái)源自 3 e du教育網(wǎng) 教學(xué)過(guò)程Ⅰ.提出問(wèn)題,創(chuàng)設(shè)情境[師]你能用簡(jiǎn)便方法計(jì)算下列各題嗎?(1)20011999(2)9981002 [生甲]直接乘比較復(fù)雜,我考慮把它化成整百,整千的運(yùn)算,從而使運(yùn)算簡(jiǎn)單,2001可以寫(xiě)成2000+1,1999可以寫(xiě)成20001,那么20011999可以看成是多項(xiàng)式的積,根據(jù)多項(xiàng)式乘法法則可以很快算出.[生乙]那么9981002=(10002)(1000+2)了.[師]很好,請(qǐng)同學(xué)們自己動(dòng)手運(yùn)算一下.[生](1)20011999=(2000+1)(20001)=2000212000+12000+1(1)=200021 =40000001 =3999999.(2)9981002=(10002)(1000+2)=10002+10002+(2)1000+(2)2 =1000222 =10000004 =1999996.[師]20011999=2000212 9981002=1000222 它們積的結(jié)果都是兩個(gè)數(shù)的平方差,那么其他滿足這個(gè)特點(diǎn)的運(yùn)算是否也有這個(gè)規(guī)律呢?我們繼續(xù)進(jìn)行探索.Ⅱ.導(dǎo)入新課[師]出示投影片計(jì)算下列多項(xiàng)式的積.(1)(x+1)(x1)(2)(m+2)(m2)(3)(2x+1)(2x1)(4)(x+5y)(x5y)觀察上述算式,你發(fā)現(xiàn)什么規(guī)律?運(yùn)算出結(jié)果后,你又發(fā)現(xiàn)什么規(guī)律?再舉兩例驗(yàn)證你的發(fā)現(xiàn).(學(xué)生討論,教師引導(dǎo))[生甲]上面四個(gè)算式中每個(gè)因式都是兩項(xiàng).[生乙](1)是x與1這兩個(gè)數(shù)的和與差的積。算式(2)是m與2這兩個(gè)數(shù)的和與差的積。算式(3)是2x與1?這兩個(gè)數(shù)的和與差的積。算式(4)是x與5y這兩個(gè)數(shù)的和與差的積.[師]這個(gè)發(fā)現(xiàn)很重要,請(qǐng)同學(xué)們動(dòng)筆算一下,相信你還會(huì)有更大的發(fā)現(xiàn).[生]解:(1)(x+1)(x1)=x2+xx1=x212(2)(m+2)(m2)=m2+2m2m22=m222(3)(2x+1)(2x1)=(2x)2+2x2x1=(2x)212(4)(x+5y)(x5y)=x2+5yxx5y(5y)2 =x2(5y)2 [生]從剛才的運(yùn)算我發(fā)現(xiàn): 也就是說(shuō),兩個(gè)數(shù)的和與差的積等于這兩個(gè)數(shù)的平方差,這和我們前面的簡(jiǎn)便運(yùn)算得出的是同一結(jié)果.[師]能不能再舉例驗(yàn)證你的發(fā)現(xiàn)? [生]: 5149=(50+1)(501)=502+50501=(50+1)(501)=50212.(a+b)(ab)=(a)(a)+(a)(b)+b(a)+b(b)=(a)2b2=a2b2 這同樣可以驗(yàn)證:兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積,等于這兩個(gè)數(shù)的平方差.[師]為什么會(huì)是這樣的呢? [生]因?yàn)槔枚囗?xiàng)式與多項(xiàng)式的乘法法則展開(kāi)后,中間兩項(xiàng)是同類項(xiàng),且系數(shù)互為相反數(shù),所以和為零,只剩下這兩個(gè)數(shù)的平方差了.[師],并對(duì)此規(guī)律進(jìn)行證明.[生]這個(gè)規(guī)律用符號(hào)表示為:(a+b)(ab)=、b表示任意數(shù),也可以表示任意的單項(xiàng)式、:(a+b)(ab)=a2ab+abb2=a2b2.[師](a+b)(ab)=a2b2起一個(gè)名字呢? [生]最終結(jié)果是兩個(gè)數(shù)的平方差,叫它“平方差公式”怎樣樣? [師]“平方差公式”,?請(qǐng)同學(xué)們分別用文字語(yǔ)言和符號(hào)語(yǔ)言敘述這個(gè)公式.(出示投影)兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積,:(a+b)(ab)=a2b2 平方差公式是多項(xiàng)式乘法運(yùn)算中一個(gè)重要的公式,用它直接運(yùn)算會(huì)很簡(jiǎn)便,感受平方差公式給運(yùn)算帶來(lái)的方便,從而靈活運(yùn)用平方差公式進(jìn)行計(jì)算(出示投影片)例1:運(yùn)用平方差公式計(jì)算:(1)(3x+2)(3x2)(2)(b+2a)(2ab)(3)(x+2y)(x2y)例2:計(jì)算:(1)10298(2)(y+2)(y2)(y1)(y+5)[師生共析]運(yùn)用平方差公式時(shí)要注意公式的結(jié)構(gòu)特征,(1)中可以把3x看作a,:(3x+2)(3x2)=(3x)222(a+b)(ab)=a2b2 同樣的方法可以完成(2)、(3).如果形式上不符合公式特征,可以做一些簡(jiǎn)單的轉(zhuǎn)化工作,(2)應(yīng)先作如下轉(zhuǎn)化:(b+2a)(2ab)=(2a+b)(2ab).如果轉(zhuǎn)化后還不能符合公式特征,則應(yīng)考慮多項(xiàng)式的乘法法則.(作如上分析后,學(xué)生可以自己完成兩個(gè)例題.?也可以通過(guò)學(xué)生的板演進(jìn)行評(píng)析達(dá)到鞏固和深化的目的)[例1]解:(1)(3x+2)(3x2)=(3x)222=9x24.(2)(b+2a)(2ab)=(2a+b)(2ab)=(2a)2b2=4a2b2.(3)(x+2y)(x2y)=(x)2(2y)2=x24y2.[例2]解:(1)10298=(100+2)(1002)=100222=100004=9996.(2)(y+2)(y2)(y1)(y+5)=y222(y2+5yy5)=y24y24y+5 =4y+1.[師]我們能不能總結(jié)一下利用平方差公式應(yīng)注意什么? [生]我覺(jué)得應(yīng)注意以下幾點(diǎn):(1)公式中的字母a、b可以表示數(shù),也可以是表示數(shù)的單項(xiàng)式、多項(xiàng)式即整式.(2)要符合公式的結(jié)構(gòu)特征才能運(yùn)用平方差公式.(3)有些多項(xiàng)式與多項(xiàng)式的乘法表面上不能應(yīng)用公式,?但通過(guò)加法或乘法的交換律、結(jié)合律適當(dāng)變形實(shí)質(zhì)上能應(yīng)用公式.[生]運(yùn)算的最后結(jié)果應(yīng)該是最簡(jiǎn)才行.[師]: 計(jì)算:(1)(a+b)(b+a)(2)(ab)(ab)(3)(3a+2b)(3a2b)(4)(a5b2)(a5+b2)(5)(a+2b+2c)(a+2b2c)(6)(ab)(a+b)(a2+b2)Ⅳ.課時(shí)小結(jié)通過(guò)本節(jié)學(xué)習(xí)我們掌握了如下知識(shí).(1)平方差公式兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積等于這兩個(gè)數(shù)的平方差.?(a+b)(ab)=a2b2.(2)公式的結(jié)構(gòu)特征①公式的字母a、b可以表示數(shù),也可以表示單項(xiàng)式、多項(xiàng)式。②要符合公式的結(jié)構(gòu)特征才能運(yùn)用平方差公式。③有些式子表面上不能應(yīng)用公式,但通過(guò)適當(dāng)變形實(shí)質(zhì)上能應(yīng)用公式.?如:(x+yz)(xyz)=[(xz)+y][(xz)y]=(xz)2y2.Ⅴ.課后作業(yè)、~─1題第二篇:完全平方公式教案一、復(fù)習(xí)舊知探究,計(jì)算下列各式,你能發(fā)現(xiàn)什么規(guī)律?(1)(p+1)2 =(p+1)(p+1)=_________;(2)(m+2)2=(m+2)(m+2)=_________;(3)(p-1)2 =(p-1)(p-1)=_________;(4)(m-2)2=(m-2)(m-2)=_________.答案:(1)p2+2p+1;(2)m2+4m+4;(3)p2-2p+1;(4)m2-4m+4.二、探究新知:(a+b)2 和(a-b)2 ;并說(shuō)明發(fā)現(xiàn)的規(guī)律。(a+b)2=(a+b)(a+b)= a(a+b)+b(a+b)=a2+ab+ab+b2 =a2+2ab+b2.(a-b)2=(a-b)(a-b)=a(a-b)-b(a-b)=a2-ab-ab+b2=a2-2ab+b2. 兩數(shù)和(或差)的平方,等于它們的平方和,加(或減)它們的積的2倍,即學(xué)生利用多項(xiàng)式與多項(xiàng)式相乘的法則進(jìn)行計(jì)算,觀察計(jì)算結(jié)果,尋找一般性的結(jié)論,并進(jìn)行歸納,允許學(xué)生之間互相補(bǔ)充,教師不急于概括.這里是對(duì)前邊進(jìn)行的運(yùn)算的復(fù)習(xí),目的是讓學(xué)生通過(guò)觀察、歸納,鼓勵(lì)他們發(fā)現(xiàn)這個(gè)公式的一些特點(diǎn),如公式左右邊的特征,便于進(jìn)一步應(yīng)用公式計(jì)算公式的推導(dǎo)既是對(duì)上述特例的概括,更是從特殊到一般的歸納證明,在此應(yīng)注意向?qū)W生滲透數(shù)學(xué) 教學(xué)程序及教學(xué)內(nèi)容 師生行為 設(shè)計(jì)意圖(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2 3.歸納完全平方公式的特征:(1)左邊為兩個(gè)數(shù)的和或差的平方;(2)右邊為兩個(gè)數(shù)的平方和再加或減這兩個(gè)數(shù)的積的2倍. 4.【例1】運(yùn)用完全平方公式計(jì)算:⑴ ; ⑵ 【點(diǎn)撥】展開(kāi)后的式子有三項(xiàng),.利用完全平方公式計(jì)算:(1)(-x+2y)2;(2)(-x-y)2;(3)(x+y-z)2;解析:(1)題可轉(zhuǎn)化為(2y-x)2或(x-2y)2,再運(yùn)用完全平方公式;(2)題可以轉(zhuǎn)化為(x+y)2,利用和的完全平方公式;(3)題利用加法結(jié)合律變形為[(x+y)-z]2,或[x+(y-z)][(x-z)+y]2,再用完全平方公式計(jì)算; 思考⑴(a+b)2與(-a-b)2相等嗎?為什么? ⑵(a-b)2與(b-a)2相等嗎?為什么? ⑶(a-b)2與a2-b2相等嗎?為什么? 6.添括號(hào):∵4+5+2與4+(5+2)的值相等。452與4(5+2):(1)4+5+2=4+(5+2)(2)452=4(5+2)左邊沒(méi)括號(hào),右邊有括號(hào),也就是添了括號(hào),?同學(xué)們可不可以總結(jié)出添括號(hào)法則來(lái)呢? 添括號(hào)其實(shí)就是把去括號(hào)反過(guò)來(lái)。教學(xué)程序及教學(xué)內(nèi)容學(xué)生分組討論,合作交流,歸納完全平方公式的特征。部分學(xué)生板演,然后學(xué)生交流分析過(guò)程:此題需靈活運(yùn)用完全平方公式。學(xué)生思考,教師點(diǎn)撥。學(xué)生在做題時(shí),不要鼓勵(lì)他們直接套用公式,而應(yīng)讓學(xué)生理解每一步的運(yùn)算理由。.學(xué)生分組討論,最后總結(jié)。師生行為 的思想方法:特例—?dú)w納—猜想—驗(yàn)證一用數(shù)學(xué)符號(hào)表示. 的設(shè)置是由淺入深,讓 每個(gè)學(xué)生感到學(xué)有所成,感,親身 ,讓學(xué)生掌握。第三篇:完全平方公式教案完全平方公式教案1一、教材分析本節(jié)內(nèi)容在全書(shū)及章節(jié)的地位:《完全平方公式》是人教版數(shù)學(xué)八年級(jí)上冊(cè)第十四章的內(nèi)容。在此之前,學(xué)生已學(xué)習(xí)了多項(xiàng)式的乘法,這為過(guò)渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。本節(jié)課通過(guò)學(xué)生合作學(xué)習(xí),利用多項(xiàng)式相乘法則和圖形解釋而得到完全平方公式,進(jìn)而理解和運(yùn)用完全平方公式,對(duì)以后學(xué)習(xí)因式分解,解一元二次方程都具有舉足輕重的作用。作為一名數(shù)學(xué)老師,不僅要傳授給學(xué)生數(shù)學(xué)知識(shí),更重要的是傳授給學(xué)生數(shù)學(xué)思想、數(shù)學(xué)意識(shí),因此本節(jié)課在教學(xué)中力圖向?qū)W生滲透換元思想和數(shù)形結(jié)合思想 。二、學(xué)情分析學(xué)生剛學(xué)過(guò)多項(xiàng)式的乘法,已具備學(xué)習(xí)和運(yùn)用完全平方公式的知識(shí)結(jié)構(gòu),但是由于學(xué)生初步學(xué)習(xí)乘法公式,認(rèn)清公式結(jié)構(gòu)并不容易,因此教學(xué)時(shí)要循序漸進(jìn)。三、教學(xué)目標(biāo)知識(shí)與技能。過(guò)程與方法經(jīng)歷探索完全平方公式的過(guò)
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
公安備案圖鄂ICP備17016276號(hào)-1