【總結(jié)】余弦函數(shù)、正切函數(shù)的圖象與性質(zhì)一、教學(xué)目標(biāo)1、知識目標(biāo)(1)理解余弦函數(shù)的圖象與性質(zhì)(2)理解正切函數(shù)的圖象與性質(zhì)2、能力目標(biāo)(1)引導(dǎo)學(xué)生自己由所學(xué)的知識推導(dǎo)未知的知識,根據(jù)正弦函數(shù)的圖象、誘導(dǎo)公式推導(dǎo)出余弦函數(shù)的圖象,并自己總結(jié)其性質(zhì)(2)引導(dǎo)學(xué)生仿照對正弦函數(shù)的研究,自己利用三角函數(shù)線得出正切函數(shù)
2025-11-09 16:45
【總結(jié)】自選課題:分類加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理一、教學(xué)設(shè)計(jì)1.教學(xué)內(nèi)容解析“分類加法計(jì)數(shù)原理和分步乘法計(jì)數(shù)原理”(以下簡稱“兩個(gè)計(jì)數(shù)原理”)是人教A版高中數(shù)學(xué)課標(biāo)教材選修2-3“第一章計(jì)數(shù)原理”第,教學(xué)需要安排4個(gè)課時(shí),本節(jié)課為第1課時(shí).計(jì)數(shù)就是數(shù)數(shù).原理是在大量觀察、實(shí)踐的基礎(chǔ)上,經(jīng)過抽象、歸納、概括而得出具有普遍意義的基
2025-11-19 00:02
【總結(jié)】二次函數(shù)的性質(zhì)與圖象教案【教學(xué)目標(biāo)】1、讓學(xué)生學(xué)會(huì)畫函數(shù)的圖象,并能通過圖象和解析式,正確地說出開口方向,對稱軸以及頂點(diǎn)坐標(biāo),圖象性質(zhì).2、通過探索讓學(xué)生經(jīng)歷二次函數(shù)性質(zhì)探究的過程,理解二次函數(shù)的性質(zhì)及它與函數(shù)的關(guān)系。3、在教學(xué)中滲透美的教育,滲透數(shù)形結(jié)合的思想.重點(diǎn):理解二次函數(shù)的性質(zhì),難點(diǎn):
2025-11-11 03:13
【總結(jié)】雙基達(dá)標(biāo)?限時(shí)20分鐘?1.函數(shù)y=-sinx,x∈??????-π2,3π2的簡圖是().解析由y=sinx與y=-sinx的圖象關(guān)于x軸對稱可知選D.答案D2.在[0,2π]內(nèi),不等式sinx-32的解集是().A.(0,
2025-11-18 23:47
【總結(jié)】雙基達(dá)標(biāo)?限時(shí)20分鐘?1.函數(shù)y=3sin??????2x+π6的圖象的一條對稱軸方程是().A.x=0B.x=2π3C.x=-π6D.x=π3解析令sin??????2x+π6=±1,得2x+π6=kπ+π2(k∈Z),即x=k2π
2025-11-19 01:12
【總結(jié)】第一章第2課時(shí)一、選擇題1.與函數(shù)y=tan????2x+π4的圖象不相交的一條直線是()A.x=π2B.y=π2C.x=π8D.y=π8[答案]C[解析]由正切函數(shù)圖象知2x+π4≠kπ+π2,k∈Z,∴x≠kπ2+π8,k∈Z,故符合題意只有C選項(xiàng)
【總結(jié)】正弦型函數(shù)y=Asin(ωx+φ)的圖象(課前預(yù)習(xí)案)班級:___姓名:________編寫:一、新知導(dǎo)學(xué)1、在函數(shù))sin(????tRy中,點(diǎn)P旋轉(zhuǎn)一周所需要的時(shí)間??2?T,叫做點(diǎn)P的______在1秒內(nèi),點(diǎn)P轉(zhuǎn)動(dòng)的周數(shù)??21??Tf,叫做轉(zhuǎn)動(dòng)的______。0
【總結(jié)】二次函數(shù)的性質(zhì)與圖像課件問題1說出下列函數(shù)的開口方向、對稱軸、頂點(diǎn)(1)y=(x+2)2-1;(2)y=-(x-2)2+2;(3)y=a(x+h)2+k.(1)y=x2和y=ax2(a?0)的圖像之間有什么關(guān)系?問題2(2)y=ax2和
2025-11-09 12:11
【總結(jié)】正弦型函數(shù)的圖象課堂教學(xué)設(shè)計(jì)教學(xué)目標(biāo)1、初步認(rèn)識振幅、周期、頻率、初相的概念,認(rèn)識正弦型函數(shù);2、會(huì)“五點(diǎn)作圖”作正弦型函數(shù)的圖象。例:、y=2sinx、y=sinx、、、等;3、能夠認(rèn)識以上這些函數(shù)與正弦函數(shù)圖象的關(guān)系,即它們是如何通過正弦函數(shù)圖象平移、伸縮而得到;4、明確的物理意義,把數(shù)學(xué)知
【總結(jié)】正弦型函數(shù)的圖像變換教學(xué)設(shè)計(jì)一、教學(xué)目標(biāo):知識與技能目標(biāo):能借助計(jì)算機(jī)課件,通過探索、觀察參數(shù)A、ω、φ對函數(shù)圖象的影響,并能概括出三角函數(shù)圖象各種變換的實(shí)質(zhì)和內(nèi)在規(guī)律;會(huì)用圖象變換畫出函數(shù)y=Asin(ωx+φ)的圖象。過程與方法目標(biāo):通過對探索過程的體驗(yàn),培養(yǎng)學(xué)生的觀察能力和探索問題的能力,數(shù)形結(jié)合的思想;領(lǐng)會(huì)從特殊到
【總結(jié)】§的教學(xué)設(shè)計(jì)【教學(xué)目標(biāo)】1、知識與技能目標(biāo):結(jié)合觀覽車的實(shí)例,了解周期、頻率、初相、相位的定義;會(huì)用五點(diǎn)法畫函數(shù)的簡圖;能借助多媒體課件,通過探索、觀察參數(shù)對函數(shù)圖象的影響,并概括出三角函數(shù)圖象各種變換的實(shí)質(zhì)和內(nèi)在規(guī)律.
2025-11-18 23:50
【總結(jié)】第一章第1課時(shí)一、選擇題1.函數(shù)y=sinax(a≠0)的最小正周期為π,則a的值為()A.2B.-2C.±2D.12[答案]C[解析]由題意,得2π|a|=π,∴a=±2.2.用五點(diǎn)法作y=2sin2x的圖象時(shí),首先應(yīng)描出的五點(diǎn)的橫坐標(biāo)
【總結(jié)】第一章第1課時(shí)一、選擇題1.函數(shù)y=|cosx|的周期為()A.2πB.πC.π2D.π4[答案]B[解析]作出函數(shù)y=|cosx|的簡圖,由圖象可知,函數(shù)y=|cosx|的周期為π.2.函數(shù)y=cos2x的圖象()A.關(guān)于直線x=-π4對稱
【總結(jié)】§正弦函數(shù)的性質(zhì)(課前預(yù)習(xí)案)班級:___姓名:________編寫:一、新知導(dǎo)學(xué)1.請根據(jù)正弦函數(shù)圖象sinyx?的定義域是______;值域是______;當(dāng)x?______________時(shí),maxy?____;當(dāng)x=________________時(shí),miny?
2025-11-09 16:46
【總結(jié)】(6)正弦型函數(shù)y=Asin(ωx+φ)的性質(zhì)(課前預(yù)習(xí)案)班級:___姓名:________編寫:一、新知導(dǎo)學(xué)1.y=sinx所有點(diǎn)的縱坐標(biāo)___________(當(dāng)A1時(shí))或__________(當(dāng)0A1)到原來的A倍(橫坐標(biāo)不變)而得到的函數(shù)ARxxAy(,sin??