【總結(jié)】?1.相反向量?我們規(guī)定,與a長度,方向的向量,叫做a的相反向量,記作-a,零向量的相反向量仍是.?關(guān)于相反向量有以下結(jié)論?①-(-a)=;?②a+(-a)=(-a)+a=;?③若a、b是互為相反的向量,則b=-a,a+b
2024-11-12 16:45
【總結(jié)】1、平面向量的坐標(biāo)表示與平面向量分解定理的關(guān)系。2、平面向量的坐標(biāo)是如何定義的?3、平面向量的運(yùn)算有何特點(diǎn)?類似地,由平面向量的分解定理,對于平面上的任意向量,均可以分解為不共線的兩個向量和使得a→11λa→22λa→=a
2024-11-12 17:12
2024-11-12 19:04
【總結(jié)】海鹽高級中學(xué)高新軍復(fù)習(xí)引入:?若e1、e2是同一平面內(nèi)的兩個不共線向量,則對于這一平面內(nèi)的任意向量a,有且只有一對實(shí)數(shù)λ1,λ2,使a=λ1e1+λ2e2.?設(shè)i、j是與x軸、y軸同向的兩個單位向量,若a=xi+yj,則a=(x,y).我們需要研究的問題是:⑴向量的和、差、數(shù)乘、模的運(yùn)算
2025-08-05 06:24
【總結(jié)】一、復(fù)習(xí)用空間向量解決立體幾何問題的“三步曲”。(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問題中涉及的點(diǎn)、直線、平面,把立體幾何問題轉(zhuǎn)化為向量問題;(2)通過向量運(yùn)算,研究點(diǎn)、直線、平面之間的位置關(guān)系以及它們之間距離和夾角等問題;(3)把向量的運(yùn)算結(jié)果“翻譯”成相應(yīng)的幾何意義。(化為向量問題)(進(jìn)行向量運(yùn)算)(
2024-11-09 03:30
【總結(jié)】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修4《向量加法運(yùn)算及其幾何意義》教學(xué)目標(biāo)?掌握向量的加法運(yùn)算,并理解其幾何意義;?會用向量加法的三角形法則和平行四邊形法則作兩個向量的和向量,培養(yǎng)數(shù)形結(jié)合解決問題的能力;?通過將向量運(yùn)算與熟悉的數(shù)的運(yùn)算進(jìn)行類比,使學(xué)生掌握向量加法運(yùn)算的交換律和結(jié)合律,并會用
【總結(jié)】空間向量的引入為代數(shù)方法處理立體幾何問題提供了一種重要的工具和方法,解題時,可用定量的計算代替定性的分析,從而回避了一些嚴(yán)謹(jǐn)?shù)耐评碚撟C。求空間角與距離是立體幾何的一類重要的問題,也是高考的熱點(diǎn)之一。本節(jié)課主要是討論怎么樣用向量的辦法解決空間角與距離的問題。建立空間直角坐標(biāo)系,解立體幾何題1122330???abab
2024-11-09 01:53
【總結(jié)】1上杭縣高級中學(xué)講課人:周文才時間:07年12月14日2345678所以:解:以點(diǎn)C為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系如圖所示,設(shè)則C||所以與所成角的余弦值為9設(shè)平面xyz點(diǎn)評:找到
2024-11-12 16:42
【總結(jié)】向量數(shù)乘運(yùn)算及其幾何意義問題提出、差向量?算,如3+3+3+3+3=5×3=等的幾個向量相加是否也能轉(zhuǎn)化為數(shù)乘運(yùn)算呢?這需要從理論上進(jìn)行探究.abaabba+ba-b探究一:向量的數(shù)乘運(yùn)算及其幾何意義思考1:已知非零向量a,如何求作向量a+a+a和(-a)+(-
【總結(jié)】平面直線的方向向量是如何定義的?唯一嗎?如何表示空間直線的方向?空間直線的方向向量和平面的法向量對于空間任意一條直線l,我們把與直線平行的非零向量d叫做直線的一個方向向量。?方向向量空間直線的方向向量是唯一的嗎?一個空間向量能夠表示幾條空間直線的方向向量?例1:如圖所示的空間直角
2025-08-16 01:54
【總結(jié)】1空間向量及其運(yùn)算(四)共線與共面分析2上一節(jié),我們發(fā)現(xiàn):1.空間一點(diǎn)P在直線AB上的充要條件是________________________________.空間向量及其運(yùn)算(四)共線與共面分析?唯一實(shí)數(shù),tR?使APt?AB或?qū)臻g任意一點(diǎn),存在唯一實(shí)數(shù),tR?使
2025-07-24 15:35
【總結(jié)】OxyijaA(x,y)a兩者相同3.兩個向量相等的充要條件,利用坐標(biāo)如何表示?坐標(biāo)(x,y)一一對應(yīng)向量a1.以原點(diǎn)O為起點(diǎn)作OA=a,點(diǎn)A的位置由誰確定?2.點(diǎn)A的坐標(biāo)與向量a的坐標(biāo)有什么關(guān)系?由a唯一確定a=bx1=x2且y1=y2
2025-08-05 06:17
【總結(jié)】專題五:平面向量專題備考指導(dǎo)及考情分析:平面向量是高中數(shù)學(xué)的重要內(nèi)容,它是銜接代數(shù)與幾何的橋梁和紐帶,向量、向量法在其他章節(jié)內(nèi)容中的穿插、滲透和融合,是高考數(shù)學(xué)試題中的一道靚麗的風(fēng)景,綜觀2022年全國各地高考試卷,對平面向量的考查主要包括以下三個層次:(1)考查平面向量的性質(zhì)和運(yùn)算法則,以及基本運(yùn)算技能;(2)考查向
2025-08-16 02:00
【總結(jié)】向量的坐標(biāo)表示與運(yùn)算復(fù)習(xí)1、平面向量基本定理的內(nèi)容是什么?2、什么是平面向量的基底?平面向量的基本定理:向量的基底:不共線的平面向量e1,e2叫做這一平面內(nèi)所有向量的一組基底.如果e1,e2是同一平面內(nèi)的兩個不共線的向量,那么對于這一平面內(nèi)的任一向量a,有且只有
2024-11-09 03:52
【總結(jié)】1212112212,,,,,,,,,,.nnnnnaaakkkakakakaaaa????定義設(shè)是一組向量,是一組實(shí)數(shù),則所組成的向量叫做向量組的一個線性組合四共線、共面的向量組下一頁返回
2025-07-22 21:21