【總結(jié)】點(diǎn)列、遞歸數(shù)列和數(shù)學(xué)歸納法 【考題回放】?1.已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2(an-1),則a2等于(?A?)?A.4???????B.2?????
2025-08-04 17:56
【總結(jié)】數(shù)學(xué)歸納法數(shù)學(xué)歸納法及其應(yīng)用舉例課題引入①觀察:6=3+3,8=5+3,10=3+7,12=5+7,14=3+11,16=5+11,···78=67+11,···我們能得出什么結(jié)論?任何一個(gè)大于等于6的偶數(shù),都可以表示成兩個(gè)
2024-10-04 20:45
【總結(jié)】數(shù)學(xué)歸納法應(yīng)用舉例 一、選擇題 1.分析法是從要證明的結(jié)論出發(fā),逐步尋求使結(jié)論成立的( ?。? A.充分條件 B.必要條件 C.充要條件 D.等價(jià)條件 答案:A 2.結(jié)論為:...
2025-03-15 03:51
【總結(jié)】第一篇:巧用數(shù)學(xué)歸納法證明不等式 巧用數(shù)學(xué)歸納法證明不等式 數(shù)學(xué)歸納法是解決與正整數(shù)有關(guān)的命題的數(shù)學(xué)方法,它是通過有限個(gè)步驟的推理,證明n取無限個(gè)正整數(shù)的情形。 第一步是證明n取第一個(gè)值n0時(shí)命...
2024-11-06 00:31
【總結(jié)】考情分析通過分析近三年的高考試題可以看出,不但考查用數(shù)學(xué)歸納法去證明現(xiàn)成的結(jié)論,還考查用數(shù)學(xué)歸納法證明新發(fā)現(xiàn)的結(jié)論的正確性.?dāng)?shù)學(xué)歸納法的應(yīng)用主要出現(xiàn)在數(shù)列解答題中,一般是先根據(jù)遞推公式寫出數(shù)列的前幾項(xiàng),通過觀察項(xiàng)與項(xiàng)數(shù)的關(guān)系,猜想出數(shù)列的通項(xiàng)公式,再用數(shù)學(xué)歸納法進(jìn)行證明,初步形成“觀察—?dú)w納—猜想—證明”的思維模式;利用數(shù)學(xué)歸納法證明
2025-01-15 08:47
【總結(jié)】第一篇:數(shù)學(xué)歸納法證明不等式教案 § 學(xué)習(xí)目標(biāo):、數(shù)學(xué)歸納法證明基本步驟; 、難點(diǎn):、知識(shí)情景: (相當(dāng)于多米諾骨牌),我們可以采用下面方法來證明其正確性: (即n=no時(shí)命題成立)(歸納奠...
2024-10-29 04:04
【總結(jié)】用數(shù)學(xué)歸納法證明命題的基本步驟是:0n(1)證明當(dāng)n取第一個(gè)初始值時(shí),命題正確.)(0nkNkk??且(2)假設(shè)當(dāng)n=時(shí),結(jié)論正確,證明n=k+1結(jié)論也正確.0n在完成這兩個(gè)步驟后,就可斷定命題對(duì)從n=開始的所有的自然數(shù)n都正確.1、用數(shù)學(xué)歸納法證明命題時(shí),兩個(gè)步驟缺
2025-07-25 15:41
【總結(jié)】第一篇:高考數(shù)學(xué)典型例題---數(shù)學(xué)歸納法解題 數(shù)學(xué)歸納法 每臨大事,必有靜氣;靜則神明,疑難冰釋;積極準(zhǔn)備,坦然面對(duì);最佳發(fā)揮,舍我其誰? 結(jié)合起來看效果更好 體會(huì)絕妙解題思路建立強(qiáng)大數(shù)學(xué)模型...
2024-11-09 12:34
【總結(jié)】思考1思考2復(fù)習(xí)引入練習(xí)答案作業(yè):課本54P6題數(shù)學(xué)歸納法證明不等式數(shù)學(xué)歸納法證明不等式(即n=n0第一個(gè)命題對(duì)應(yīng)的n的值,如n0=1)(歸納奠基);n=k時(shí)命題成立,證明當(dāng)n=k+1時(shí)命題也成立(歸納遞推).數(shù)學(xué)歸納法:關(guān)于正整數(shù)n的命題(相當(dāng)于多米諾骨牌
2024-11-21 01:17
【總結(jié)】題目(選修Ⅱ)第一章概率與統(tǒng)計(jì)數(shù)學(xué)歸納法高考要求1掌握數(shù)學(xué)歸納法的證明步驟,熟練表達(dá)數(shù)學(xué)歸納法證明過程2對(duì)數(shù)學(xué)歸納法的認(rèn)識(shí)不斷深化3掌握數(shù)學(xué)歸納法的應(yīng)用:①證恒等式;②整除性的證明;③探求平面幾何中的問題;④探求數(shù)列的通項(xiàng);⑤不等式的證明知識(shí)點(diǎn)歸納1歸納法:由一些特殊事例推出一般結(jié)論的推理方法特點(diǎn):特殊→一般2不完全歸納法:根據(jù)事物的部分(而不是全部)特
2025-06-07 22:55
【總結(jié)】問題情境一4341112???4741222???5341332???6141442???7141552???的數(shù)都是質(zhì)數(shù)任何形如出猜想于是可以用歸納推理提都是質(zhì)數(shù),)(41*2Nnnn???結(jié)論是錯(cuò)誤的。是一個(gè)合數(shù)時(shí),因?yàn)?341414141414122????????nnn
2024-11-18 15:25
【總結(jié)】§數(shù)學(xué)歸納法學(xué)習(xí)目標(biāo)思維脈絡(luò)1.能理解用數(shù)學(xué)歸納法證明問題的原理.2.會(huì)用數(shù)學(xué)歸納法證明與正整數(shù)有關(guān)的等式及數(shù)列問題.3.能用數(shù)學(xué)歸納法證明與n有關(guān)的不等式整除問題.4.注意總結(jié)用數(shù)學(xué)歸納法證明命題的步驟與技巧方法.121.數(shù)學(xué)歸納法數(shù)學(xué)歸納法是用來證
2024-11-18 00:49
【總結(jié)】難點(diǎn)31數(shù)學(xué)歸納法解題,抽象與概括,從特殊到一般是應(yīng)用的一種主要思想方法.●難點(diǎn)磁場(chǎng)(★★★★)是否存在a、b、c使得等式1·22+2·32+…+n(n+1)2=(an2+bn+c).●案例探究[例1]試證明:不論正數(shù)a、b、c是等差數(shù)列還是等比數(shù)列,當(dāng)n>1,n∈N*且a、b、c互不相等時(shí),均有:an+>2bn.命題意圖:本題主要考查數(shù)學(xué)歸納法證
2025-06-08 00:20
【總結(jié)】2.3數(shù)學(xué)歸納法(2)證明某些與自然數(shù)有關(guān)的數(shù)學(xué)題,可用下列方法來證明它們的正確性:(1)驗(yàn)證當(dāng)n取第一個(gè)值n0(例如n0=1)時(shí)命題成立,(2)假設(shè)當(dāng)n=k(k?N*,k?n0)時(shí)命題成立,證明當(dāng)n=k+1時(shí)命題也成立完成這兩步,就可以斷定這個(gè)命題對(duì)從n0開始的所有正整數(shù)n都成立。這種證明方法叫做數(shù)學(xué)歸納法。
【總結(jié)】第一篇:歸納法證明不等式 歸納法證明不等式 由于lnx0則x 1設(shè)f(x)=x-lnxf'(x)=1-1/x0 則f(x)為增函數(shù)f(x)f(1)=1 則xlnx 則可知道等式成...
2024-10-28 02:13