freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高三數(shù)學(xué)第二輪專題復(fù)習(xí)系列(8)---圓錐曲線(已修改)

2025-08-17 18:37 本頁面
 

【正文】 高三數(shù)學(xué)第二輪專題復(fù)習(xí)系列(8) 圓錐曲線 一、知識結(jié)構(gòu)在平面直角坐標(biāo)系中,如果某曲線C(看作適合某種條件的點(diǎn)的集合或軌跡 )上的點(diǎn)與一個二元方程f(x,y)=0的實(shí)數(shù)解建立了如下的關(guān)系:(1)曲線上的點(diǎn)的坐標(biāo)都是這個方程的解;(2);這條曲線叫 做方程的曲線.點(diǎn)與曲線的關(guān)系 若曲線C的方程是f(x,y)=0,則點(diǎn)P0(x0,y0)在曲線C上f(x0,y 0)=0;點(diǎn)P0(x0,y0)不在曲線C上f(x0,y0)≠0兩條曲線的交點(diǎn) 若曲線C1,C2的方程分別為f1(x,y)=0,f2(x,y)=0,則 f1(x0,y0)=0點(diǎn)P0(x0,y0)是C1,C2的交點(diǎn) f2(x0,y0) =0方程組有n個不同的實(shí)數(shù)解,兩條曲線就有n個不同的交點(diǎn);方程組沒有實(shí)數(shù)解,曲線就沒有 交點(diǎn).圓的定義點(diǎn)集:{M||OM|=r},其中定點(diǎn)O為圓心,定長r為半徑.圓的方程(1)標(biāo)準(zhǔn)方程圓心在c(a,b),半徑為r的圓方程是(xa)2+(yb)2=r2圓心在坐標(biāo)原點(diǎn),半徑為r的圓方程是x2+y2=r2(2)一般方程當(dāng)D2+E24F>0時,一元二次方程x2+y2+Dx+Ey+F=0叫做圓的一般方程,圓心為(,,將方程x2+y2+Dx+Ey+F=0化為(x+)2+(y+)2=當(dāng)D2+E24F=0時,方程表示一個點(diǎn)(,)。當(dāng)D2+E24F<0時,方程不表示任何圖形.點(diǎn)與圓的位置關(guān)系 已知圓心C(a,b),半徑為r,點(diǎn)M的坐標(biāo)為(x0,y0),則|MC|<r點(diǎn)M在圓C內(nèi),|MC|=r點(diǎn)M在圓C上,|MC|>r點(diǎn)M在圓C內(nèi),其中|MC|=.(3)直線和圓的位置關(guān)系①直線和圓有相交、相切、相離三種位置關(guān)系直線與圓相交有兩個公共點(diǎn)直線與圓相切有一個公共點(diǎn)直線與圓相離沒有公共點(diǎn)②直線和圓的位置關(guān)系的判定(i)判別式法(ii)利用圓心C(a,b)到直線Ax+By+C=0的距離d=與半徑r的大小關(guān)系來判定.、雙曲線和拋物線橢圓、雙曲線和拋物線的基本知識見下表.曲線性質(zhì)橢 圓雙曲線拋物線軌跡條件點(diǎn)集:({M||MF1+|MF2|=2a,|F 1F2|<2a=點(diǎn)集:{M||MF1||MF2|.=177。2a,|F2F2|>2a}.點(diǎn)集{M| |MF|=點(diǎn)M到直線l的距離}.圓 形標(biāo)準(zhǔn)方程+=1(a>b>0)=1(a>0,b>0)y2=2px(p>0)頂 點(diǎn)A1(a,0),A2(a,0)。B1(0,b),B2(0,b)A1(0,a),A2(0,a)O(0,0)軸對稱軸x=0,y=0長軸長:2a短軸長:2b對稱軸x=0,y=0實(shí)軸長:2a 虛軸長:2b對稱軸y=焦 點(diǎn)F1(c,0),F2(c,0)焦點(diǎn)在長軸上F1(c,0),F2(c,0)焦點(diǎn)在實(shí)軸上F(,0)焦點(diǎn)對稱軸上焦 距|F1F2|=2c,c=|F1F2|=2c,c=準(zhǔn) 線x=177。準(zhǔn)線垂直于長軸,且在橢圓外.x=177。準(zhǔn)線垂直于實(shí)軸,且在兩頂點(diǎn)的內(nèi)側(cè).x=準(zhǔn)線與焦點(diǎn)位于頂點(diǎn)兩側(cè),且到頂點(diǎn)的距離相等.離心率e=,0<e<1e=,e>1e=1 平面內(nèi)的動點(diǎn)P(x,y)到一個定點(diǎn)F(c,0)的距離與到不通過這個定點(diǎn)的一條定直線l的距離之 比是一個常數(shù)e(e>0),則動點(diǎn)的軌跡叫做圓錐曲線.其中定點(diǎn)F(c,0)稱為焦點(diǎn),定直線l稱為準(zhǔn)線,正常數(shù)e稱為離心率.當(dāng)0<e<1時,軌跡為橢圓當(dāng)e=1時,軌跡為拋物線當(dāng)e>1時,軌跡為雙曲線坐標(biāo)變換 在解析幾何中,把坐標(biāo)系的變換(如改變坐標(biāo)系原點(diǎn)的位置或坐標(biāo)軸的方向)叫做 ,點(diǎn)的位置,曲線的形狀、大小、位置都不改變,僅僅只改變點(diǎn) 的坐標(biāo)與曲線的方程.坐標(biāo)軸的平移 坐標(biāo)軸的方向和長度單位不改變,只改變原點(diǎn)的位置,這種坐標(biāo)系的變換叫 做坐標(biāo)軸的平移,簡稱移軸.坐標(biāo)軸的平移公式 設(shè)平面內(nèi)任意一點(diǎn)M,它在原坐標(biāo)系xOy中的坐標(biāo)是9x,y),在新坐標(biāo)系x ′O′y′中的坐標(biāo)是(x′,y′).設(shè)新坐標(biāo)系的原點(diǎn)O′在原坐標(biāo)系xOy中的坐標(biāo)是(h,k),則 x=x′+h x′=xh(1) 或(2) y=y′+k y′=yk公式(1)或(2)叫做平移(或移軸)公式.中心或頂點(diǎn)在(h,k)的圓錐曲線方程中心或頂點(diǎn)在(h,k)的圓錐曲線方程見下表.方 程焦 點(diǎn)焦 線對稱軸橢圓+=1(177。c+h,k)x=177。+hx=hy=k+ =1(h,177。c+k)y=177。+kx=hy=k雙曲線=1(177。c+h,k)=177。+kx=hy=k=1(h,177。c+h)y=177。+kx=hy=k拋物線(yk)2=2p(xh)(+h,k)x=+hy=k(yk)2=2p(xh)(+h,k)x=+hy=k(xh)2=2p(yk)(h, +k)y=+kx=h(xh)2=2p(yk)(h, +k)y=+kx=h二、知識點(diǎn)、能力點(diǎn)提示(一)曲線和方程,由已知條件列出曲線的方程,曲線的交點(diǎn)說明 在求曲線方程之前必須建立坐標(biāo)系,然后根據(jù)條件列出等式進(jìn)行化簡 .特別是在求出方程后要考慮化簡的過程是否是同解變形,是否滿足已知條件,只有這樣求 ,要求會判斷 曲線間有無交點(diǎn),會求曲線的交點(diǎn)坐標(biāo).三、 考綱中對圓錐曲線的要求:考試內(nèi)容:. ;. ;. ;考試要求:. (1)掌握橢圓的定義、標(biāo)準(zhǔn)方程和橢圓的簡單幾何性質(zhì),理解橢圓的參數(shù)方程;. (2)掌握雙曲線的定義、標(biāo)準(zhǔn)方程和雙曲線的簡單幾何性質(zhì);. (3)掌握拋物線的定義、標(biāo)準(zhǔn)方程和拋物線的簡單幾何性質(zhì);. (4)了解圓錐曲線的初步應(yīng)用。四.對考試大綱的理解高考圓錐曲線試題一般有3題(1個選擇題, 1個填空題, 1個解答題), 共計22分左右, 考查的知識點(diǎn)約為20個左右. 其命題一般緊扣課本, 突出重點(diǎn), 全面考查. 選擇題和填空題考查以圓錐曲線的基本概念和性質(zhì)為主, 難度在中等以下,一般較容易得分,解答題常作為數(shù)學(xué)高考中的壓軸題,綜合考查學(xué)生數(shù)形結(jié)合、等價轉(zhuǎn)換、分類討論、邏輯推理等諸方面的能力,重點(diǎn)考查圓錐曲線中的重要知識點(diǎn), 通過知識的重組與鏈接, 使知識形成網(wǎng)絡(luò), 著重考查直線與圓錐曲線的位置關(guān)系, 往往結(jié)合平面向量進(jìn)行求解,在復(fù)習(xí)應(yīng)充分重視。求圓錐曲線的方程【復(fù)習(xí)要點(diǎn)】求指定的圓錐曲線的方程是高考命題的重點(diǎn),主要考查識圖、畫圖、數(shù)形結(jié)合、等價轉(zhuǎn)化、分類討論、邏輯推理、合理運(yùn)算及創(chuàng)新思維能力,解決好這類問題,除要求熟練掌握好圓錐曲線的定義、性質(zhì)外,命題人還常常將它與對稱問題、弦長問題、最值問題等綜合在一起命制難度較大的題,解決這類問題常用定義法和待定系數(shù)法.一般求已知曲線類型的曲線方程問題,可采用“先定形,后定式,再定量”的步驟.定形——指的是二次曲線的焦點(diǎn)位置與對稱軸的位置.定式——根據(jù)“形”設(shè)方程的形式,注意曲線系方程的應(yīng)用,如當(dāng)橢圓的焦點(diǎn)不確定在哪個坐標(biāo)軸上時,可設(shè)方程為mx2+ny2=1(m>0,n>0).定量——由題設(shè)中的條件找到“式”中特定系數(shù)的等量關(guān)系,通過解方程得到量的大小.【例題】【例1】 雙曲線=1(b∈N)的兩個焦點(diǎn)FF2,P為雙曲線上一點(diǎn),|OP|<5,|PF1|,|F1F2|,|PF2|成等比數(shù)列,則b2=_________.解:設(shè)F1(-c,0)、F2(c,0)、P(x,y),則|PF1|2+|PF2|2=2(|PO|2+|F1O|2)<2(52+c2),即|PF1|2+|PF2|2<50+2c2,又∵|PF1|2+|PF2|2=(|PF1|-|PF2|)2+2|PF1||PF2|,依雙曲線定義,有|PF1|-|PF2|=4,依已知條件有|PF1||PF2|=|F1F2|2=4c2∴16+8c2<50+2c2,∴c2<,又∵c2=4+b2<,∴b2<,∴b2=1.答案:1【例2】 已知圓C1的方程為,橢圓C2的方程為,C2的離心率為,如果C1與C2相交于A、B兩點(diǎn),且線段AB恰為圓C1的直徑,求直線AB的方程和橢圓C2的方程。解:由設(shè)橢圓方程為設(shè) 又 兩式相減,得 又即將由得解得 故所有橢圓方程【例3】 過點(diǎn)(1,0)的直線l與中心在原點(diǎn),焦點(diǎn)在x軸上且離心率為的橢圓C相交于A、B兩點(diǎn),直線y=x過線段AB的中點(diǎn),同時橢圓C上存在一點(diǎn)與右焦點(diǎn)關(guān)于直線l對稱,試求直線l與橢圓C的方程.解法一:由e=,得,從而a2=2b2,c=b.設(shè)橢圓方程為x2+2y2=2b2,A(x1,y1),B(x2,y2)在橢圓上.則x12+2y12=2b2,x22+2y22=2b2,兩式相減得,(x12-x22)+2(y12-y22)=0,設(shè)AB中點(diǎn)為(x0,y0),則kAB=-,又(x0,y0)在直線y=x上,y0=x0,于是-=-1,kAB=-1,設(shè)l的方程為y=-x+1.右焦點(diǎn)(b,0)關(guān)于l的對稱點(diǎn)設(shè)為(x′,y′),由點(diǎn)(1,1-b)在橢圓上,得1+2(1-b)2=2b2,b2=.∴所求橢圓C的方程為 =1,l的方程為y=-x+1.解法二:由e=,從而a2=2b2,c=b.設(shè)橢圓C的方程為x2+2y2=2b2,l的方程為y=k(x-1),將l的方程代入C的方程,得(1+2k2)x2-4k2x+2k2-2b2=0,則x1+x2=,y1+y2=k(x1-1)+k(x2-1)=k(x1+x2)-2k=-.直線l:y=x過AB的中點(diǎn)(),則,解得k=0,或k=-1.若k=0,則l的方程為y=0,焦點(diǎn)F(c,0)關(guān)于直線l的對稱點(diǎn)就是F點(diǎn)本身,不能在橢圓C上,所以k=0舍去,從而k=-1,直線l的方程為y=-(x-1),即y=-x+1,以下同解法一.解法3:設(shè)橢圓方程為直線不平行于y軸,否則AB中點(diǎn)在x軸上與直線中點(diǎn)矛盾。故可設(shè)直線,,,,,,,則,, 所以所求的橢圓方程為:【例4】 如圖,已知△P1OP2的面積為,P為線段P1P2的一個三等分點(diǎn),求以直線OPOP2為漸近線且過點(diǎn)P的離心率為的雙曲線方程.解:以O(shè)為原點(diǎn),∠P1OP2的角平分線為x軸建立如圖所示的直角坐標(biāo)系.設(shè)雙曲線方程為=1(a>0,b>0)由e2=,得.∴兩漸近線OPOP2方程分別為y=x和y=-x設(shè)點(diǎn)P1(x1, x1),P2(x2,-x2)(x1>0,x2>0),則由點(diǎn)P分所成的比λ==2,得P點(diǎn)坐標(biāo)為(),又點(diǎn)P在雙曲線=1上,所以=1,即(x1+2x2)2-(x1-2x2)2=9a2,整理得8x1x2=9a2 ①即x1x2= ②由①、②得a2=4,b2=9故雙曲線方程為=1.【例5】 過橢圓C:上一動點(diǎn)P引圓O:x2 +y2 =b2的兩條切線PA、PB,A、B為切點(diǎn),直線AB與x軸,y軸分別交于M、N兩點(diǎn)。(1) 已知P點(diǎn)坐標(biāo)為(x0,y0 )并且x0y0≠0,試求直線AB方程;(2) 若橢圓的短軸長為8,并且,求橢圓C的方程;(3) 橢圓C上是否存在點(diǎn)P,由P向圓O所引兩條切線互相垂直?若存在,請求出存在的條件;若不存在,請說明理由。解:(1)設(shè)A(x1,y1),B(x2, y2)切線PA:,PB:∵P點(diǎn)在切線PA、PB上,∴∴直線AB的方程為(2)在直線AB方程中,令y=0,則M(,0);令x=0,則N(0,)∴ ①∵2b=8 ∴b=4 代入①得a2 =25, b2 =16∴橢圓C方程: (注:不剔除xy≠0,可不扣分)(3) 假設(shè)存在點(diǎn)P(x0,y0)滿足PA⊥PB,連接OA、OB由|PA|=|PB|知,四邊形PAOB為正方形,|OP|=|OA| ∴ ① 又∵P點(diǎn)在橢圓C上 ∴ ②由①②知x∵ab0 ∴a2 -b20(1)當(dāng)a2-2b20,即ab時,橢圓C上存在點(diǎn),由P點(diǎn)向圓所引兩切線互相垂直;(2)當(dāng)a2-2b20,即bab時,橢圓C上不存在滿足條件的P點(diǎn)【例6】 已知橢圓C的焦點(diǎn)是F1(-,0)、F2(,0),點(diǎn)F1到相應(yīng)的準(zhǔn)線的距離為,過F2點(diǎn)且傾斜角為銳角的直線l與橢圓C交于A、B兩點(diǎn),使得|F2B|=3|F2A|. (1)求橢圓C的方程;(2)求直線l的方程.解:(1)依題意,橢圓中心為O(0,0),
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
公安備案圖鄂ICP備17016276號-1