【總結(jié)】第1頁數(shù)學(xué)(理)新課標(biāo)·高考二輪總復(fù)習(xí)第一部分高考專題講解第2頁數(shù)學(xué)(理)新課標(biāo)·高考二輪總復(fù)習(xí)專題五數(shù)列、不等式、推理與證明第3頁數(shù)學(xué)(理)新課標(biāo)·高考二輪總復(fù)習(xí)第十三講
2025-05-07 22:33
【總結(jié)】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修5《不等式的性質(zhì)》審校:王偉教學(xué)目標(biāo)?1、掌握不等式的性質(zhì)及其推論,并能證明這些結(jié)論。?2、進(jìn)一步鞏固不等式性質(zhì)定理,并能應(yīng)用性質(zhì)解決有關(guān)問題。?教學(xué)重點(diǎn):?1、不等式的性質(zhì)及證明。?2、不等式的性質(zhì)及應(yīng)用性質(zhì)1:如果ab
2024-11-11 05:50
【總結(jié)】1解不等式一.選擇題:1.使不等式xx1?成立的x取值范圍是()A.)1(?,B.)1(???,C.)1()01(??,,?D.)1()1(????,,?2.不等式11??xax的解集為}21|{??xxx或,則a值(
2024-11-12 18:06
【總結(jié)】第7講基本不等式及其性質(zhì)江蘇省普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)教學(xué)要求:掌握基本不等式≤(a≥0,b≥0);能用基本不等式證明簡單不等式(指只用一次基本不等式即可解決的問題);能用基本不等式求解簡單的最大(小)值問題(指只用一次基本不等式即可解決的問題)。2020江蘇高考數(shù)學(xué)科考試說明:c級(jí)
2024-11-11 02:53
【總結(jié)】不等式的性質(zhì)(1)張統(tǒng)林?質(zhì)是什么?請(qǐng)用”””3,5+23+2,5-23-2(2)-12,6×52×5,6×
2025-08-04 13:03
【總結(jié)】.2不等式的性質(zhì)(1)設(shè)計(jì)者:莫勤方;31).1(??23___21???33___31???;35).2(?aa??3___5aa??3___5;26).3(?;52___56??)5(2___)5(6????;32).4(??;63___62???)6(3___)6(2?????;64).5(???
2024-10-19 08:40
【總結(jié)】第一篇:均值不等式及其應(yīng)用 教師寄語:一切的方法都要落實(shí)到動(dòng)手實(shí)踐中 高三一輪復(fù)習(xí)數(shù)學(xué)學(xué)案 均值不等式及其應(yīng)用 一.考綱要求及重難點(diǎn) 要求:(?。?,難度為中低檔題,.考點(diǎn)梳理 a+:3;...
2024-10-27 10:26
【總結(jié)】不等式的性質(zhì)七年級(jí)(下冊(cè))作者:周進(jìn)榮(無錫市蠡園中學(xué))初中數(shù)學(xué)你知道等式具有哪些性質(zhì)嗎?解方程:(1)x+1=4;(2)2x=-6.那么不等式具有哪些性質(zhì)呢?等式兩邊加上或減去同一個(gè)數(shù)(或同一整式),所得結(jié)果仍是等式.等式的性
2024-11-24 20:15
【總結(jié)】第二章一元一次不等式與一元一次不等式組解決實(shí)際問題列方程列不等式其他解方程解不等式等式的基本性質(zhì)?下面判斷正確嗎?a=b,b=c,則a=c.a=b,則a+8=b+8.a=b,則-6a=-6b.√√√等式的基本性質(zhì):如果a==c,那
2024-11-21 01:12
【總結(jié)】不等式的性質(zhì)一、激情引入:1、ABC中有恒成立的等量關(guān)系嗎?(正弦定理、余弦定理)2、ABC中有恒成立的不等量關(guān)系嗎?(兩邊之和大于第三邊,兩邊之差小于第三邊)3、我們以前學(xué)習(xí)過的不等量的關(guān)系還有那些?二、嘗試自學(xué):1、兩個(gè)數(shù)的大小有那些關(guān)系?2、兩個(gè)數(shù)的大小反映在數(shù)軸上有何特
2024-11-06 15:49
【總結(jié)】2020/12/13洪湖二中:王愛平2020年12月2020/12/13設(shè)一元二次方程對(duì)應(yīng)的二次函數(shù)為(1)方程在區(qū)間內(nèi)有兩個(gè)不等的實(shí)根的充要條件是(2)方程在區(qū)間內(nèi)有兩個(gè)不等的實(shí)根的充要條件是(3)方程有一根大于,另一根小于的充要條件是(1)oxyk(3)
2024-11-06 21:52
【總結(jié)】不等式的應(yīng)用高三備課組一、內(nèi)容歸納1知識(shí)精講:在前面幾節(jié)課學(xué)習(xí)的不等式的性質(zhì)、證明和解不等式的基礎(chǔ)上運(yùn)用不等式的的知識(shí)和思想方法分析、解決一些涉及不等式關(guān)系的問題.2重點(diǎn)難點(diǎn):善于將一個(gè)表面上看來并非是不等式的問題借助不等式的有關(guān)部門知識(shí)來解決.3思維方式:合理轉(zhuǎn)化;正
2024-11-09 08:50
【總結(jié)】一元二次不等式及其解法考察下面含未知數(shù)x的不等式:15x2+30x-10和3x2+6x-1≤0.這兩個(gè)不等式有兩個(gè)共同特點(diǎn):(1)含有一個(gè)未知數(shù)x;(2)未知數(shù)的最高次數(shù)為2.一般地,含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)為2的整式不等式
2025-08-16 02:12
【總結(jié)】2020屆高考數(shù)學(xué)復(fù)習(xí)強(qiáng)化雙基系列課件42《不等式的應(yīng)用》一、內(nèi)容歸納1知識(shí)精講:在前面幾節(jié)課學(xué)習(xí)的不等式的性質(zhì)、證明和解不等式的基礎(chǔ)上運(yùn)用不等式的的知識(shí)和思想方法分析、解決一些涉及不等式關(guān)系的問題.2重點(diǎn)難點(diǎn):善于將一個(gè)表面上看來并非是不等式的問題借助不等式的有關(guān)部門知識(shí)來解決.3思維方式:合理轉(zhuǎn)化;正
2024-11-11 08:50
【總結(jié)】例1、甲、乙兩電腦批發(fā)商每次在同一電腦耗材廠以相同價(jià)格購進(jìn)電腦芯片。甲、乙兩公司共購芯片兩次,每次的芯片價(jià)格不同,甲公司每次購10000片芯片,乙公司每次購10000元芯片,兩次購芯片,哪家公司平均成本低?請(qǐng)給出證明過程。分析:設(shè)第一、第二次購芯片的價(jià)格分別為每片a元和b元,列出甲、乙兩公司的平均價(jià)格,然后利用不等式知識(shí)論證。解:
2024-11-06 21:53