【總結(jié)】不等式的性質(zhì)?學(xué)習(xí)目標(biāo):?.?.?.?一.復(fù)習(xí)?不等式的基本原理及含義?a-b0ab?a-b=0a=b?a-bab?四大作用:?(1)
2024-10-19 08:40
【總結(jié)】不等式的性質(zhì)(復(fù)習(xí)課)一、基礎(chǔ)知識(shí)1、兩個(gè)數(shù)的大小關(guān)系a>ba-b>0a<ba-b<0a=ba-b=02、比較兩個(gè)數(shù)的大小的方法作差變形判斷符號(hào)得出結(jié)論3、作
2025-08-05 19:30
【總結(jié)】第六章不等式不等式的概念及性質(zhì)要點(diǎn)·疑點(diǎn)·考點(diǎn)不等式的性質(zhì)是證明不等式和解不等式的理論基礎(chǔ),通過(guò)本節(jié)復(fù)習(xí),要求理解不等式的性質(zhì),會(huì)討論有關(guān)不等式命題的充分性和必要性,正確判斷命題的真假.不等式有如下性質(zhì):1.實(shí)數(shù)的大小順序與運(yùn)算性質(zhì)之間的關(guān)系:0????baba
2024-11-07 02:27
【總結(jié)】不等式的基本性質(zhì)溫故而知新:同學(xué)們還記得等式的基本性質(zhì)嗎?等式兩邊都加上,或都減去,或都乘以,或都除以(除數(shù)不為零)同一個(gè)數(shù),所得到的仍是等式天平你能根據(jù)等式的基本性質(zhì)猜想一下不等式會(huì)具有哪些性質(zhì)嗎?性質(zhì)1:不等式的兩邊都加上(或都減去)同一個(gè)數(shù),不等號(hào)的方向___________不變
2025-08-05 19:42
【總結(jié)】回憶:不等式的性質(zhì)。不等式的性質(zhì)1:如果ab,那么a+cb+c,a-cb-c。不等式的性質(zhì)2:如果ab,并且c0,那么acbc。不等式的性質(zhì)3:如果ab,并且c0,那么acbc。觀察下列不等式找出其特點(diǎn)。
2025-09-20 11:24
【總結(jié)】不等式的證明(4)換元法復(fù)習(xí):分析法:一、三角換元注意點(diǎn):角的范圍與半徑的范圍二、代數(shù)換元代數(shù)換元:主元;均值代換練習(xí)小結(jié):
2024-11-11 02:53
【總結(jié)】復(fù)習(xí)回顧?一.等式的性質(zhì)?等式的基本性質(zhì)1:在等式兩邊都加上(或減去)同一個(gè)數(shù)或整式,結(jié)果仍相等.?等式的基本性質(zhì)2:在等式兩邊都乘以或除以同一個(gè)數(shù)(除數(shù)不為0),結(jié)果仍相等.?二.解一元一次方程的基本步驟1.去分母2.去括號(hào)3.移項(xiàng)4.合并同類項(xiàng)5.系數(shù)化為1(3)6>
2024-11-21 03:59
【總結(jié)】主講老師:習(xí)題講評(píng)復(fù)習(xí)幾個(gè)重要的不等式:復(fù)習(xí)幾個(gè)重要的不等式:)(.2,,.122”時(shí)取“當(dāng)且僅當(dāng)那么如果?????baabbaRba復(fù)習(xí)幾個(gè)重要的不等式:)(.2,,.122”時(shí)取“當(dāng)且僅當(dāng)那么如果?????ba
2024-11-09 04:45
【總結(jié)】第7講基本不等式及其性質(zhì)江蘇省普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)教學(xué)要求:掌握基本不等式≤(a≥0,b≥0);能用基本不等式證明簡(jiǎn)單不等式(指只用一次基本不等式即可解決的問(wèn)題);能用基本不等式求解簡(jiǎn)單的最大(?。┲祮?wèn)題(指只用一次基本不等式即可解決的問(wèn)題)。2020江蘇高考數(shù)學(xué)科考試說(shuō)明:c級(jí)
【總結(jié)】第四節(jié)基本不等式基礎(chǔ)梳理2()2ab?1.基本不等式2abab??(1)基本不等式成立的條件:.(2)等號(hào)成立的條件:當(dāng)且僅當(dāng)時(shí)取等號(hào).2.幾個(gè)重要的不等式(1)a2+b2≥(a,b∈R).(2)≥(a,b同號(hào)).(3)a
2024-11-12 01:26
【總結(jié)】第一課時(shí)不等式性質(zhì)及其應(yīng)用必修5第三章高中數(shù)學(xué)學(xué)業(yè)水平考試總復(fù)習(xí)不等式學(xué)習(xí)目標(biāo),理解兩個(gè)正數(shù)的基本不等式及其簡(jiǎn)單應(yīng)用,關(guān)注學(xué)科內(nèi)綜合.,理解一元二次不等式的解法;知道二元一次不等式的幾何意義,理解用平面區(qū)域表示二元一次不等式組,關(guān)注實(shí)踐應(yīng)用.
2024-11-09 23:32
【總結(jié)】不等式的性質(zhì)(1)宜昌市上海中學(xué):蔡田野一.等式的性質(zhì)等式的基本性質(zhì)1:在等式兩邊都加上(或減去)同一個(gè)數(shù)或整式,結(jié)果仍相等.等式的基本性質(zhì)2:在等式兩邊都乘以或除以同一個(gè)數(shù)(除數(shù)不為0),結(jié)果仍相等.復(fù)習(xí)回顧,情景引入二.類比等式的性質(zhì),不等式又有哪些性質(zhì)?我們這節(jié)課將要學(xué)習(xí)這
2024-11-22 04:19
【總結(jié)】不等式的性質(zhì)(二)一、復(fù)習(xí)引入:1、兩個(gè)數(shù)大小比較的方法,步驟2、兩個(gè)正數(shù)的和是數(shù);積是數(shù);正數(shù)的相反數(shù)是數(shù);負(fù)數(shù)的相反數(shù)是數(shù);兩同號(hào)的數(shù)的積是數(shù);兩異號(hào)的數(shù)的積是數(shù);二、學(xué)生自學(xué)、教師輔導(dǎo):1、不等式的五個(gè)性質(zhì)2、每個(gè)性質(zhì)的證明思維、成立
【總結(jié)】不等式的基本性質(zhì)1、如果a=b,b=c,那么a=c()依據(jù):熱身運(yùn)動(dòng)等式的傳遞性下列說(shuō)法是否正確,并說(shuō)明理由等式的基本性質(zhì)22、如果a=b,那么a+3=b+3()依據(jù):3、如果a=b,那么3a=3b或()
2025-05-09 22:18