【總結(jié)】?.?條件.?.重點(diǎn)難點(diǎn)重點(diǎn):利用導(dǎo)數(shù)知識(shí)求函數(shù)的極值難點(diǎn):對(duì)極大、極小值概念的理解及求可導(dǎo)函數(shù)的極值的步驟觀察圖象中,點(diǎn)a和點(diǎn)b處的函數(shù)值與它們附近點(diǎn)的函數(shù)值有什么的大小關(guān)系?aboxy??xfy?一極值的定義?點(diǎn)a叫做函數(shù)y=f(x)的極小值點(diǎn),
2025-07-26 19:48
【總結(jié)】參變量函數(shù)的導(dǎo)數(shù)一、由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù).,)()(定的函數(shù)稱(chēng)此為由參數(shù)方程所確間的函數(shù)關(guān)系與確定若參數(shù)方程xytytx???????例如?????,,22tytx2xt?消去參數(shù)22)2(xty???42x?xy21???
2025-07-18 14:25
【總結(jié)】.導(dǎo)數(shù)的運(yùn)算幾個(gè)常用函數(shù)的導(dǎo)數(shù)1.導(dǎo)數(shù)的幾何意義是什么?????00.nnnnfxfxPPkxx???割線的斜率是????????000'00,.,.lim.xPPkPTfxxxkf
2024-12-08 07:42
【總結(jié)】1.隱函數(shù)的導(dǎo)數(shù)隱函數(shù)即由方程0),(?yxF所確定的函數(shù)).(xfy?直接在方程0),(?yxF兩邊對(duì)x求導(dǎo)再解出,y?但應(yīng)注意F對(duì)變?cè)獃求導(dǎo)時(shí),要利用復(fù)合求導(dǎo)法則.2.對(duì)數(shù)求導(dǎo)法當(dāng)函數(shù)式較復(fù)雜(含乘、除、乘方、開(kāi)方、冪指函數(shù)等)時(shí),在方程兩邊取對(duì)數(shù),按隱函數(shù)的求
2025-07-24 04:24
【總結(jié)】個(gè)性化教學(xué)輔導(dǎo)教案教案課題函數(shù)的單調(diào)性教師姓名學(xué)生姓名××××上課日期學(xué)科數(shù)學(xué)適用年級(jí)高一教材版本人教版A學(xué)習(xí)目標(biāo)1.掌握用定義法求函數(shù)的單調(diào)性2.掌握函數(shù)最值的求法重難點(diǎn)重點(diǎn):函數(shù)的單調(diào)性及其幾何意義,函數(shù)的最大(?。┲导捌鋷缀我饬x.難點(diǎn):利用函數(shù)的單調(diào)性定義
2025-06-30 19:52
【總結(jié)】利用Excel的NORMSDIST函數(shù)建立正態(tài)分布表董大鈞,喬莉沈陽(yáng)理工大學(xué)應(yīng)用技術(shù)學(xué)院、信息與控制分院,遼寧撫順113122摘要:利用Excel辦公軟件特有的NORMSDIST函數(shù)可以很準(zhǔn)確方便的建立正態(tài)分布表、查找某分位數(shù)點(diǎn)的正態(tài)分布概率值,極大的提高了數(shù)理統(tǒng)計(jì)的效率。該函數(shù)可返回指定平均值和標(biāo)準(zhǔn)偏差的正態(tài)分布函數(shù),將其引入到統(tǒng)計(jì)及數(shù)據(jù)分析處理過(guò)程中,代替原有的手工查
2025-06-30 18:56
【總結(jié)】......導(dǎo)數(shù)中雙變量的函數(shù)構(gòu)造21.(12分)已知函數(shù)(). ?。?)若函數(shù)是單調(diào)函數(shù),求的取值范圍;(2)求證:當(dāng)時(shí),都有.21.解:(1)函數(shù)的定義域?yàn)?,∵,∴,∵函?shù)是單調(diào)函數(shù),∴或在上恒成立,①∵,∴,即,,
2025-05-16 03:43
【總結(jié)】《常見(jiàn)函數(shù)的導(dǎo)數(shù)》教案一、學(xué)習(xí)目標(biāo):掌握初等函數(shù)的求導(dǎo)公式;[來(lái)源:中國(guó)*%教育#~@出版網(wǎng)]二、學(xué)習(xí)重難點(diǎn):用定義推導(dǎo)常見(jiàn)函數(shù)的導(dǎo)數(shù)公式.三、學(xué)習(xí)過(guò)程【復(fù)習(xí)準(zhǔn)備】①導(dǎo)數(shù)的定義;②導(dǎo)數(shù)的幾何意義;③導(dǎo)函數(shù)的定義;④求函數(shù)的導(dǎo)數(shù)的流程圖.(1)求函數(shù)的改變量
2024-12-07 20:51
【總結(jié)】了解函數(shù)單調(diào)性和導(dǎo)數(shù)的關(guān)系/能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會(huì)求函數(shù)的單調(diào)區(qū)間/了解函數(shù)在某點(diǎn)取得極值的必要條件和充分條件/會(huì)用導(dǎo)數(shù)求函數(shù)的極大值、極小值/會(huì)求閉區(qū)間上函數(shù)的最大值、最小值/會(huì)利用導(dǎo)數(shù)解決某些實(shí)際問(wèn)題導(dǎo)數(shù)的應(yīng)用1.函數(shù)在某區(qū)間上單調(diào)的充分條件一般地,設(shè)函數(shù)y=f(x)在某個(gè)區(qū)間內(nèi)有導(dǎo)數(shù),如果在這個(gè)區(qū)間內(nèi)y′
2024-09-29 15:55
【總結(jié)】《常見(jiàn)函數(shù)的導(dǎo)數(shù)》同步檢測(cè)一、基礎(chǔ)過(guò)關(guān)1.下列結(jié)論中正確的個(gè)數(shù)為_(kāi)_______.[來(lái)源:zz^@step&.*%]①f(x)=ln2,則f′(x)=12;[來(lái)@&*源^:中教~網(wǎng)]②f(x)=1x2,則f′(3)=-227;③f(x)=2x,則f′(x)=2xln2;
【總結(jié)】復(fù)合函數(shù)的導(dǎo)數(shù)練習(xí)題一、選擇題=的導(dǎo)數(shù)是A.B.C.-D.-=sin3(3x+)的導(dǎo)數(shù)為(3x+)cos(3x+)(3x+)cos(3x+)(3x+)D.-9sin2(3x+)cos(3x+)=cos(sinx)的導(dǎo)數(shù)為A.-[sin(si
2025-03-25 00:18
【總結(jié)】對(duì)數(shù)函數(shù)與指數(shù)函數(shù)的導(dǎo)數(shù)一、復(fù)習(xí)與引入:1.函數(shù)的導(dǎo)數(shù)的定義與幾何意義....,我們已經(jīng)掌握了初等函數(shù)中的冪函數(shù)、三角函數(shù)的導(dǎo)數(shù),但還缺少指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的導(dǎo)數(shù),而這就是我們今天要新學(xué)的內(nèi)容.有了指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的導(dǎo)數(shù),也就解決了初等函
2025-05-15 02:15
【總結(jié)】上頁(yè)下頁(yè)結(jié)束返回首頁(yè)四、隱函數(shù)的導(dǎo)數(shù)對(duì)數(shù)求導(dǎo)法由參數(shù)方程所確定函數(shù)的導(dǎo)數(shù)?隱函數(shù)的導(dǎo)數(shù)?對(duì)數(shù)求導(dǎo)法由參數(shù)?方程所確定函數(shù)的導(dǎo)數(shù)上頁(yè)下頁(yè)結(jié)束返回首頁(yè)1、隱函數(shù)的導(dǎo)數(shù)P102定義:.)(0),(,,,0),(xf
2025-02-21 12:49
【總結(jié)】1北師大版高中數(shù)學(xué)選修2-2第三章《導(dǎo)數(shù)應(yīng)用》河北隆堯第一中學(xué)2一、教學(xué)目標(biāo):1、知識(shí)與技能:會(huì)求函數(shù)的最大值與最小值。2、過(guò)程與方法:通過(guò)具體實(shí)例的分析,會(huì)利用導(dǎo)數(shù)求函數(shù)的最值。3、情感、態(tài)度與價(jià)值觀:讓學(xué)生感悟由具體到抽象,由特殊到一般的思想方法。二、教學(xué)重點(diǎn):函數(shù)最大值與最小值的求法教學(xué)難點(diǎn):函數(shù)最
2025-08-05 06:05
【總結(jié)】1第六節(jié)高階導(dǎo)數(shù)一、問(wèn)題的提出二、主要定理三、典型例題四、小結(jié)與思考2一、問(wèn)題的提出問(wèn)題:(1)解析函數(shù)是否有高階導(dǎo)數(shù)?(2)若有高階導(dǎo)數(shù),其定義和求法是否與實(shí)變函數(shù)相同?回答:(1)解析函數(shù)有各高階導(dǎo)數(shù).(2)高階導(dǎo)數(shù)的值可以用函數(shù)在邊界上的值通過(guò)積分來(lái)表示
2025-04-30 12:01