【總結(jié)】1思考1數(shù)量積的性質(zhì)思考2數(shù)量積的運算律引入數(shù)量積運算定義課堂練習(xí)空間向量的數(shù)量積運算2022-11-052空間向量的數(shù)量積運算(一)SF?W=|F||s|cos?根據(jù)功的計算,我們定義了平面兩向量的數(shù)量積運算.一旦定義出來,我們發(fā)現(xiàn)這種運算非常有用,它能解
2025-07-18 12:59
【總結(jié)】一、向量的直角坐標(biāo)運算則設(shè)),,(),,,(321321bbbbaaaa??;??ab;??ab;??a;??ab//;.??ab;??ab112233(,,)???ababab112233(,,)???ababab123(,,),()??
2024-11-09 01:17
【總結(jié)】一、向量的直角坐標(biāo)運算二、距離與夾角(1)向量的長度(模)公式注意:此公式的幾何意義是表示長方體的對角線的長度。在空間直角坐標(biāo)系中,已知、,則(2)空間兩點間的距離公式注意:(1)當(dāng)時,同向;(2)當(dāng)
2024-11-12 16:42
【總結(jié)】aBAOlP空間向量的數(shù)乘運算【學(xué)習(xí)目標(biāo)】理解空間向量共線、共面的充要條件【自主學(xué)習(xí)】1.共線向量與平面向量類似,如果表示空間向量的有向線段所在的直線互相平行或重合,則這些向量叫做共線向量或平行向量,記作ba??//.當(dāng)向量a?、b?共線(或a?//b?)時,表示a?、b
2024-12-05 06:40
【總結(jié)】2020年12月16日星期三學(xué)習(xí)目標(biāo)?1.理解空間向量的概念,掌握空間向量的加法運算。?2.用空間向量的運算意義和運算律解決立幾問題。?重點:空間向量的加法、減法運算律。?難點:用向量解決立幾問題.OABC正東正北向上如圖:已知OA=6米,AB=6米,BC=3米,
2024-11-09 08:04
【總結(jié)】《數(shù)乘向量》教學(xué)設(shè)計一、教材分析:向量具有豐富的實際背景和幾何背景,向量既有大小,、減法運算及其幾何意義;本節(jié)接著學(xué)習(xí)向量的數(shù)乘運算及其幾何意義.向量數(shù)乘運算以及加法、減法統(tǒng)稱為向量的三大線性運算,,引入數(shù)乘運算,,既有大小,,,應(yīng)用相當(dāng)廣泛,且容易出錯,尤其是定理的前提條件:,且與后學(xué)的知識有著密切的聯(lián)系.二、學(xué)情分析:學(xué)生在已經(jīng)學(xué)習(xí)了近一學(xué)期的高中課程內(nèi)容后,在思
2025-04-17 01:36
【總結(jié)】下關(guān)一中2014級數(shù)學(xué)空間向量及其運算1.空間向量的概念:在空間,我們把具有大小和方向的量叫做向量注:⑴空間的一個平移就是一個向量⑵向量一般用有向線段表示同向等長的有向線段表示同一或相等的向量⑶空間的兩個向量可用同一平面內(nèi)的兩條有向線段來表示2.空間向量的運算定義:與平面向量運算一樣,空間向量的加法、減法與數(shù)乘向量運算如下;;運算律:⑴加法交換律:⑵加法結(jié)
2025-03-23 11:39
【總結(jié)】坐標(biāo)表示1.空間向量的基本定理:2.平面向量的坐標(biāo)表示及運算律:(,,)pxiyjijxy??(1)若分別是軸上同方向的兩個單位向量(,)pxy則的坐標(biāo)為1212(,),(,)aaabbb??(2)若11221122(,)
2024-11-18 12:14
【總結(jié)】高二數(shù)學(xué)教學(xué)設(shè)計——設(shè)計人:董永興教材分析:引入空間直角坐標(biāo)系,為學(xué)生學(xué)習(xí)立體幾何提供了新的方法和新的觀點,為培養(yǎng)學(xué)生思維提供了更廣闊的空間,在學(xué)生學(xué)習(xí)了空間向量的幾何形式和運算,以及基本定理的基礎(chǔ)上進(jìn)一步學(xué)習(xí)空間向量的坐標(biāo)運算及其規(guī)律,是平面向量的坐標(biāo)運算在空間推廣和拓展,為運用向量坐標(biāo)運算解
2025-04-16 12:24
【總結(jié)】數(shù)量積運算一、兩個向量的夾角兩條相交直線的夾角是指這兩條直線所成的銳角或直角,即取值范圍是(0°,90°],而向量的夾角可以是鈍角,其取值范圍是[0°,180°]二、兩個向量的數(shù)量積注:①兩個向量的數(shù)量積是數(shù)量,而不是向量.②規(guī)定:零向量與任意向量的數(shù)量積等于零.a
【總結(jié)】?空間向量數(shù)量積運算律(分配律)的說明?a·(b+c)=a·b+a·c,對于平面向量cba??2?1ADEOBC因為|b+c|cosθ=|b|cosθ1+|c|cosθ2|a||b+c|cosθ=|a||b|cosθ1+|a||c|cosθ2所以:a·
2025-07-23 08:49
【總結(jié)】浙江省玉環(huán)縣楚門中學(xué)呂聯(lián)華㈠向量的定義:在空間,我們把具有大小和方向的量叫做向量。a···ABCDB1A1C1D1這個”平移“就是一個向量a=―自西向東平移4個單位”b記作:向量a、b。兩個向量不能比較大小,因為決定向量的兩個因素是大小
2024-11-10 00:47
【總結(jié)】1向量空間、基和維數(shù)2一、向量空間概念則稱V是向量空間定義設(shè)V是非空的n維向量的集合,如果(1)V對加法運算具有封閉性,即,有(2)V對數(shù)乘運算具有封閉性,
2025-07-25 16:20
【總結(jié)】a,b是不共線的兩個向量,λ,μ∈R,且λa+μb=0,則()A.λ=μ=0B.a(chǎn)=b=0C.λ=0,b=0D.μ=0,a=0解析:選A.∵a,b不共線,∴a,b為非零向量,又∵λa+μb=0,∴λ=μ=
【總結(jié)】空間向量的數(shù)乘運算(二)【學(xué)習(xí)目標(biāo)】1.掌握空間向量的數(shù)乘運算律,能進(jìn)行簡單的代數(shù)式化簡;2.理解共線向量定理和共面向量定理及它們的推論;3.能用空間向量的運算意義及運算律解決簡單的立體幾何中的問題.【重點難點】空間向量的數(shù)乘運算律用空間向量的運算意義及運算律解決簡單的立體幾何中的問題.【學(xué)習(xí)過程】
2024-11-19 20:38