【總結(jié)】aBAOlP空間向量的數(shù)乘運(yùn)算【學(xué)習(xí)目標(biāo)】理解空間向量共線、共面的充要條件【自主學(xué)習(xí)】1.共線向量與平面向量類似,如果表示空間向量的有向線段所在的直線互相平行或重合,則這些向量叫做共線向量或平行向量,記作ba??//.當(dāng)向量a?、b?共線(或a?//b?)時(shí),表示a?、b
2024-12-05 06:40
【總結(jié)】2020年12月16日星期三學(xué)習(xí)目標(biāo)?1.理解空間向量的概念,掌握空間向量的加法運(yùn)算。?2.用空間向量的運(yùn)算意義和運(yùn)算律解決立幾問題。?重點(diǎn):空間向量的加法、減法運(yùn)算律。?難點(diǎn):用向量解決立幾問題.OABC正東正北向上如圖:已知OA=6米,AB=6米,BC=3米,
2024-11-09 08:04
【總結(jié)】《數(shù)乘向量》教學(xué)設(shè)計(jì)一、教材分析:向量具有豐富的實(shí)際背景和幾何背景,向量既有大小,、減法運(yùn)算及其幾何意義;本節(jié)接著學(xué)習(xí)向量的數(shù)乘運(yùn)算及其幾何意義.向量數(shù)乘運(yùn)算以及加法、減法統(tǒng)稱為向量的三大線性運(yùn)算,,引入數(shù)乘運(yùn)算,,既有大小,,,應(yīng)用相當(dāng)廣泛,且容易出錯(cuò),尤其是定理的前提條件:,且與后學(xué)的知識(shí)有著密切的聯(lián)系.二、學(xué)情分析:學(xué)生在已經(jīng)學(xué)習(xí)了近一學(xué)期的高中課程內(nèi)容后,在思
2025-04-17 01:36
【總結(jié)】下關(guān)一中2014級(jí)數(shù)學(xué)空間向量及其運(yùn)算1.空間向量的概念:在空間,我們把具有大小和方向的量叫做向量注:⑴空間的一個(gè)平移就是一個(gè)向量⑵向量一般用有向線段表示同向等長(zhǎng)的有向線段表示同一或相等的向量⑶空間的兩個(gè)向量可用同一平面內(nèi)的兩條有向線段來表示2.空間向量的運(yùn)算定義:與平面向量運(yùn)算一樣,空間向量的加法、減法與數(shù)乘向量運(yùn)算如下;;運(yùn)算律:⑴加法交換律:⑵加法結(jié)
2025-03-23 11:39
【總結(jié)】坐標(biāo)表示1.空間向量的基本定理:2.平面向量的坐標(biāo)表示及運(yùn)算律:(,,)pxiyjijxy??(1)若分別是軸上同方向的兩個(gè)單位向量(,)pxy則的坐標(biāo)為1212(,),(,)aaabbb??(2)若11221122(,)
2024-11-18 12:14
【總結(jié)】高二數(shù)學(xué)教學(xué)設(shè)計(jì)——設(shè)計(jì)人:董永興教材分析:引入空間直角坐標(biāo)系,為學(xué)生學(xué)習(xí)立體幾何提供了新的方法和新的觀點(diǎn),為培養(yǎng)學(xué)生思維提供了更廣闊的空間,在學(xué)生學(xué)習(xí)了空間向量的幾何形式和運(yùn)算,以及基本定理的基礎(chǔ)上進(jìn)一步學(xué)習(xí)空間向量的坐標(biāo)運(yùn)算及其規(guī)律,是平面向量的坐標(biāo)運(yùn)算在空間推廣和拓展,為運(yùn)用向量坐標(biāo)運(yùn)算解
2025-04-16 12:24
【總結(jié)】數(shù)量積運(yùn)算一、兩個(gè)向量的夾角兩條相交直線的夾角是指這兩條直線所成的銳角或直角,即取值范圍是(0°,90°],而向量的夾角可以是鈍角,其取值范圍是[0°,180°]二、兩個(gè)向量的數(shù)量積注:①兩個(gè)向量的數(shù)量積是數(shù)量,而不是向量.②規(guī)定:零向量與任意向量的數(shù)量積等于零.a
【總結(jié)】?空間向量數(shù)量積運(yùn)算律(分配律)的說明?a·(b+c)=a·b+a·c,對(duì)于平面向量cba??2?1ADEOBC因?yàn)閨b+c|cosθ=|b|cosθ1+|c|cosθ2|a||b+c|cosθ=|a||b|cosθ1+|a||c|cosθ2所以:a·
2025-07-23 08:49
【總結(jié)】浙江省玉環(huán)縣楚門中學(xué)呂聯(lián)華㈠向量的定義:在空間,我們把具有大小和方向的量叫做向量。a···ABCDB1A1C1D1這個(gè)”平移“就是一個(gè)向量a=―自西向東平移4個(gè)單位”b記作:向量a、b。兩個(gè)向量不能比較大小,因?yàn)闆Q定向量的兩個(gè)因素是大小
2024-11-10 00:47
【總結(jié)】1向量空間、基和維數(shù)2一、向量空間概念則稱V是向量空間定義設(shè)V是非空的n維向量的集合,如果(1)V對(duì)加法運(yùn)算具有封閉性,即,有(2)V對(duì)數(shù)乘運(yùn)算具有封閉性,
2025-07-25 16:20
【總結(jié)】a,b是不共線的兩個(gè)向量,λ,μ∈R,且λa+μb=0,則()A.λ=μ=0B.a(chǎn)=b=0C.λ=0,b=0D.μ=0,a=0解析:選A.∵a,b不共線,∴a,b為非零向量,又∵λa+μb=0,∴λ=μ=
【總結(jié)】空間向量的數(shù)乘運(yùn)算(二)【學(xué)習(xí)目標(biāo)】1.掌握空間向量的數(shù)乘運(yùn)算律,能進(jìn)行簡(jiǎn)單的代數(shù)式化簡(jiǎn);2.理解共線向量定理和共面向量定理及它們的推論;3.能用空間向量的運(yùn)算意義及運(yùn)算律解決簡(jiǎn)單的立體幾何中的問題.【重點(diǎn)難點(diǎn)】空間向量的數(shù)乘運(yùn)算律用空間向量的運(yùn)算意義及運(yùn)算律解決簡(jiǎn)單的立體幾何中的問題.【學(xué)習(xí)過程】
2024-11-19 20:38
【總結(jié)】空間向量的數(shù)乘運(yùn)算(一)【學(xué)習(xí)目標(biāo)】1.掌握空間向量的數(shù)乘運(yùn)算律,能進(jìn)行簡(jiǎn)單的代數(shù)式化簡(jiǎn);2.理解共線向量定理和共面向量定理及它們的推論;3.能用空間向量的運(yùn)算意義及運(yùn)算律解決簡(jiǎn)單的立體幾何中的問題.【重點(diǎn)難點(diǎn)】向量的數(shù)乘運(yùn)算律,能進(jìn)行簡(jiǎn)單的代數(shù)式化簡(jiǎn);用空間向量的運(yùn)算意義及運(yùn)算律解決簡(jiǎn)單的立體幾何中的問題【
2024-11-19 19:36
【總結(jié)】高考總復(fù)習(xí).理科.數(shù)學(xué)第八章平面向量高考總復(fù)習(xí).理科.數(shù)學(xué)考綱分解解讀高考總復(fù)習(xí).理科.數(shù)學(xué)(1)了解向量的實(shí)際背景.(2)理解平面向量的概念,理解兩個(gè)向量相等的含義.(3)理解向量的幾何表示.2.(1)掌握向量加法、減法的運(yùn)算,并理解其幾何意義.
2025-08-01 17:58
【總結(jié)】課時(shí)作業(yè)(十五)一、選擇題1.設(shè)a、b、c是任意的非零平面向量,且它們相互不共線,下列命題:①(a·b)c-(c·a)b=0;②|a|=;③a2b=b2a;④(3a+2b)·(3a-2b)=9|a|2-4|b|( )A.①② B.②③ C.③④ D.②④【解析】 由于數(shù)量積不滿足結(jié)合律,故①不正確,由數(shù)量積的性質(zhì)知②正確,③中|a|
2025-03-25 06:42