【總結】含絕對值的不等式解法(一)復習思考1、復習初中學過的不等式的三條基本性質.(1)、如果,那么(2)、如果,那么(3)、注意:性質(3)是不等式兩邊都乘以同一個負數(shù),不等號的方向要變.2、復習絕對值的定義及其幾何意義.幾何意義:x在數(shù)軸上所對應點到原點的距離(二).探究新知,在數(shù)軸上在數(shù)軸上應該怎樣表示?解絕對值不等式,由絕對值的意
2025-04-17 00:47
【總結】第一篇:不等式證明20法 不等式證明方法大全 1、比較法(作差法) 在比較兩個實數(shù)a和b的大小時,可借助a-b的符號來判斷。步驟一般為:作差——變形——判斷(正號、負號、零)。變形時常用的方法有...
2024-10-28 23:16
【總結】第一篇:向量法證明不等式 向量法證明不等式 高中新教材引入平面向量和空間向量,將其延伸到歐氏空間上的n維向量,向量的加、減、,則高中階段的向量即為n=2,,b是歐氏空間的兩向量,且a=(x1,x2...
2024-11-05 17:00
【總結】1.不等式的定義:若baba????0baba????0baba????0;;.2.不等式的性質:推論:若a>b,且c>d,則a+cb+d(同向,可加性)(1)(對稱性)abba???(2)
2025-01-20 01:36
2025-07-24 19:51
【總結】第一篇:賦值法證明不等式 賦值法證明不等式的有關問題 1、已知函數(shù)f(x)=lnx (1)、求函數(shù)g(x)=(x+1)f(x)-2x+2(x31)的最小值; (2)、當0 222a(b-a)...
2024-10-29 06:45
【總結】......含參不等式恒成立問題的求解策略“含參不等式恒成立問題”把不等式、函數(shù)、三角、幾何等內容有機地結合起來,其以覆蓋知識點多,綜合性強,解法靈活等特點而倍受高考、競賽命題者的青睞。另一方面,在解決這類問題的過程中涉及的“函數(shù)與方程”、“化歸與轉化”、“數(shù)形結合”、“分類討論”等數(shù)學思想對鍛煉學生的綜合解題能力,培養(yǎng)其思維的靈活性、創(chuàng)
2025-03-24 23:42
【總結】第六章不等式第二節(jié)不等式放縮技巧十法證明不等式,其基本方法參閱(下冊):不等式的放縮技巧。證明數(shù)列型不等式,因其思維跨度大、構造性強,需要有較高的放縮技巧而充滿思考性和挑戰(zhàn)性,能全面而綜合地考查學生的潛能與后繼學習能力,因而成為高考壓軸題及各級各類競賽試題命題的極好素材。這類問題的求解策略往往是:通過多角度觀察所給
2025-06-24 19:24
【總結】放縮法證明不等式一、放縮法原理 為了證明不等式,我們可以找一個或多個中間變量C作比較,即若能判定同時成立,那么顯然正確。所謂“放”即把A放大到C,再把C放大到B;反之,由B縮小經(jīng)過C而變到A,則稱為“縮”,統(tǒng)稱為放縮法。放縮是一種技巧性較強的不等變形,必須時刻注意放縮的跨度,做到“放不能過頭,縮不能不及”。二、常見的放縮法技巧?。?、基本不等式、柯西不等式、排序不等式放縮2、糖
2025-03-25 02:44
【總結】精品資源構造法巧證不等式解題過程實質上包含著多次思維的轉化過程,如果從分析問題所提供的信息知道其本質與相關知識的內在聯(lián)系,那么該題就可以考慮轉化為運用“構造”的方法來解(證),可以達到優(yōu)化解題模式的奇妙效果.“構造”是一種重要而靈活的思維方式,,需要有敏銳的觀察、豐富的聯(lián)想、靈活的構思、,在更廣闊的背景下考察問題中所涉及的代數(shù)、:(1)要有明確的方向,即為何構造;(2)要弄清條件的本
2025-06-24 16:44
【總結】第一篇:放縮法與不等式的證明 放縮法與不等式的證明 我們知道,“放”和“縮”是證明不等式時最常用的推證技巧,但經(jīng)教學實踐告訴我們,這種技巧卻是不等式證明部分的一個教學難點。學生在證明不等式時,常因...
2024-10-28 03:46
【總結】不等式與不等式組測試姓名__________學號____一、選擇題(每題4分,共32分)1.不等式axb?的解集是bxa?,那么a的取值范圍是???????()A.0a?B.0a?C.0a?D.0a?2.不等式2135xx???的正整數(shù)解的個數(shù)是??
2024-11-11 04:58
【總結】教學案例§1.4含絕對值的不等式解法學校:織金二中組別:數(shù)學組姓名:田茂松教學目標:(一)知識目標(認知目標)1、理解并會求的解集;2、掌握的解法.(二)能力目標1、通過不等式的求解,加強學生的運算能力;2、培養(yǎng)學生數(shù)形結合、整體代換、等價轉化等的思想.(三)情感目標1、感悟形與數(shù)不同的數(shù)學形態(tài)間的和諧同一美;2、培
2025-04-17 00:12
【總結】......【課題】【教學目標】知識目標:(1)理解含絕對值不等式或的解法;(2)了解或的解法.能力目標:培養(yǎng)學生觀察、分析、歸納、概括的能力,以及邏輯推理能力,考察學生思維的積極性和全面性,領悟分類討論、化歸和數(shù)
【總結】不等式應用題1、某藥制品車間現(xiàn)有A種藥劑70克,、,,可獲利45元;,,,用這批藥劑合成兩種型號的藥品所獲的總利潤為y元(1)求y(元)與x(套)的函數(shù)關系式,并求出自變量x的取值范圍.(2)藥制品車間合成這批藥品,配制N型藥品多少套時,所獲利潤最大?最大利潤是多少?2、某工廠要招聘A,B倆個工種的工人150人,A,B倆個工種的工人的月工資分別為1500元
2025-03-24 06:13