【總結(jié)】 一.選擇題(共29小題)1.如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點A(﹣1,0),與y軸的交點B在(0,﹣2)和(0,﹣1)之間(不包括這兩點),對稱軸為直線x=1.下列結(jié)論:①abc>0②4a+2b+c>0③4ac﹣b2<8a④<a<⑤b>c.其中含所有正確結(jié)論的選項是( ?。〢.①③ B.①③④ C.②④⑤
2025-04-04 03:01
【總結(jié)】第1頁§二次函數(shù)一、選擇題1.(2022·浙江溫州模擬(2),1,4分)若二次函數(shù)y=2x2的圖象經(jīng)過點P(1,a),則a的值為()B.1C.2D.4解析把P(1,a)代入y=2x2得a=2×1=2.答案C
2025-01-07 23:12
【總結(jié)】2016年中山市積分入戶入學(xué)分值計分標準必須提交資料;;(中山辦理)(含一年)的統(tǒng)一格式證明(個體工商戶提供登記時間一年以上的有效營業(yè)執(zhí)照);?積分入戶有房產(chǎn)4、居住地衛(wèi)計部門開具的計劃生育情況審核表;5、在我市參加社保證明;(提出申請的上月繳納了社會保險費,用人單位派駐中山分支機構(gòu)人員已在總公司所在地參加社保的請參考其他說明)6、房產(chǎn)證和土地證
2025-01-17 22:41
【總結(jié)】九年級下冊數(shù)學(xué)導(dǎo)學(xué)案26.1.1二次函數(shù)【學(xué)習(xí)目標】1、能類比得出并理解掌握二次函數(shù)的概念,能判斷一個給定的函數(shù)是否為二次函數(shù)。2、根據(jù)實際問題中的條件確定二次例函數(shù)的解析式,體會函數(shù)的模型思想,會用待定系數(shù)法求簡單的二次函數(shù)的解析式。3、經(jīng)歷二次函數(shù)概念的建立過程,體會“特殊——一般——特殊”的數(shù)學(xué)思想?!緦W(xué)習(xí)重點】理解掌握二次例函數(shù)的概念?!緦W(xué)習(xí)過程】:[知識
2025-08-17 02:01
【總結(jié)】二次函數(shù)與圖像1、如圖,在平面直角坐標系中,開口向上的拋物線與軸交于兩點,為拋物線的頂點,為坐標原點.若的長分別是方程的兩根,且(1)求拋物線對應(yīng)的二次函數(shù)解析式;(2)過點作交拋物線于點,求點的坐標;(3)在(2)的條件下,過點任作直線交線段于點求到直線的距離分別為,試求的最大值.
2025-03-24 06:24
【總結(jié)】中考二次函數(shù)專題復(fù)習(xí)知識點歸納:一、二次函數(shù)概念:1.二次函數(shù)的概念:一般地,形如(是常數(shù),)的函數(shù),叫做二次函數(shù)。這里需要強調(diào):和一元二次方程類似,二次項系數(shù),而可以為零.二次函數(shù)的定義域是全體實數(shù).2.二次函數(shù)的結(jié)構(gòu)特征:⑴等號左邊是函數(shù),右邊是關(guān)于自變量的二次式,的最高次數(shù)是2.⑵是常數(shù),是二次項系數(shù),是一次項系數(shù),是常數(shù)項.二、二次函數(shù)的基本形式1.
2025-04-16 12:57
【總結(jié)】,如圖,在平面直角坐標系中,點A坐標為(-2,0),點B坐標為(0,2),點E為線段AB上的動點(點E不與點A,B重合),以E為頂點作∠OET=45°,射線ET交線段OB于點F,C為y軸正半軸上一點,且OC=AB,拋物線y=x2+mx+n的圖象經(jīng)過A,C兩點.(1)求此拋物線的函數(shù)表達式;(2)求證:∠BEF=∠AOE;(3)當△EOF為等腰三角形時,求此時點E的
2025-08-17 05:09
【總結(jié)】已知:拋物線y=-x^2+2x+8交X軸于A、B兩點(A在B左側(cè)),O是坐標原點。1、動點P在X軸上方的拋物線上(P不與A、B重合),D是OP中點,BD延長線交AP于E問:在P點運動過程中,PE:PA是否是定值?是,求出其值;不是,請說明理由。2、在第1問的條件下,是否存在點P,使△PDE的面積等于1?若存在,求出P點的坐標;若不存在,請說明理由。解:=
2025-03-24 06:13
【總結(jié)】第二十五講二次函數(shù)的圖象與性質(zhì)(二)理一理:、性質(zhì)以及它們的圖象,進行形與數(shù)、形與方程、形與不等式之間的相互轉(zhuǎn)換,是分析與解決函數(shù)問題的重要方法.△=0時,拋物線y=ax2+bx+c(a≠0)與x軸有個交點,一元二次方程ax2+bx+c=0有實根;當△<0時,拋物線y=ax2+bx+c(a≠0)與
2024-11-19 12:03
【總結(jié)】二次函數(shù) 評卷人得分一.解答題(共50小題)1.如圖,關(guān)于x的二次函數(shù)y=x2+bx+c的圖象與x軸交于點A(1,0)和點B,與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.(1)求二次函數(shù)的表達式;(2)在y軸上是否存在一點P,使△PBC為等腰三角形?若存在.請求出點P的坐標;(3)有一個點M從點A出發(fā),以每秒1個單位的速度在
【總結(jié)】1第一部分二次函數(shù)基礎(chǔ)知識?相關(guān)概念及定義?二次函數(shù)的概念:一般地,形如2yaxbxc???(abc,,是常數(shù),0a?)的函數(shù),叫做二次函數(shù)。這里需要強調(diào):和一元二次方程類似,二次項系數(shù)0a?,而bc,可以為零.二次函數(shù)的定義域是全體實數(shù).?二次函數(shù)2yaxbxc???的結(jié)構(gòu)特征:⑴等
2024-10-20 20:45
【總結(jié)】第二十六章二次函數(shù)全章測試一、填空題1.拋物線y=-x2+15有最______點,其坐標是______.2.若拋物線y=x2-2x-2的頂點為A,與y軸的交點為B,則過A,B兩點的直線的解析式為____________.3.若拋物線y=ax2+bx+c(a≠0)的圖象與拋物線y=x2-4x+3的圖
2024-11-29 02:52
【總結(jié)】二次函數(shù)中考復(fù)習(xí)專題教學(xué)目標:(1)了解二次函數(shù)的概念,掌握二次函數(shù)的圖象和性質(zhì),能正確畫出二次函數(shù)的圖象,并能根據(jù)圖象探索函數(shù)的性質(zhì);(2)能根據(jù)具體條件求出二次函數(shù)的解析式;運用函數(shù)的觀點,分析、探究實際問題中的數(shù)量關(guān)系和變化規(guī)律。教學(xué)重點u二次函數(shù)的三種解析式形式u二次函數(shù)的圖像與性質(zhì)教學(xué)難點u二次函數(shù)與其他函數(shù)共存問題u根據(jù)二次函數(shù)圖像
2025-04-17 00:56
【總結(jié)】北京中考網(wǎng)—北達教育旗下電話010-62754468中考一輪復(fù)習(xí)之二次函數(shù)(一)知識考點:掌握二次函數(shù)的圖像和性質(zhì)以及拋物線的平移規(guī)律;會確定拋物線的頂點坐標、對稱軸及最值等。精典例題:【例1】二次函數(shù)的圖像如圖所示,那么、、、這四個代數(shù)式中,值為正的有()A、4個B、3個C
2025-06-07 14:09
【總結(jié)】中考二次函數(shù)綜合壓軸題型歸類一、??键c匯總1、兩點間的距離公式:2、中點坐標:線段的中點的坐標為:直線()與()的位置關(guān)系:(1)兩直線平行且(2)兩直線相交(3)兩直線重合且(4)兩直線垂直3、一元二次方程有整數(shù)根問題,解題步驟如下:①用和參數(shù)的其他要求確定參數(shù)的取值范圍;②解方程,求出方程的根;(兩種形式:分式、二次根式)
2025-04-04 03:00