【總結(jié)】龍文教育中小學(xué)1對1課外輔導(dǎo)專家全等三角形問題中常見的輔助線的作法巧添輔助線一——倍長中線【夯實(shí)基礎(chǔ)】例:中,AD是的平分線,且BD=CD,求證AB=AC方法1:作DE⊥AB于E,作DF⊥AC于F,證明二次全等方法2:輔助線同上,利用面積方法
2025-04-16 23:10
【總結(jié)】專業(yè)資料分享相似三角形中的輔助線在添加輔助線時(shí),所添加的輔助線往往能夠構(gòu)造出一組或多組相似三角形,或得到成比例的線段或得出等角,等邊,從而為證明三角形相似或進(jìn)行相關(guān)的計(jì)算找到等量關(guān)系。主要的輔助線有以下幾種:一、作平行線例1.如圖,的AB邊和AC邊上各取一點(diǎn)D和E,且使AD=
2025-05-16 12:02
【總結(jié)】.,....南京書立行教育數(shù)學(xué)課教案課題輔助線的作法1——截長補(bǔ)短組名教師徐老師時(shí)間2018班級一對多年級初二課型復(fù)習(xí)課教學(xué)目標(biāo)掌握全等三角形的判定方法:SAS、
2025-04-07 05:01
【總結(jié)】專業(yè)資料分享金蘋果教育個性化教案:對應(yīng)角相等,對應(yīng)邊成比例的三角形,叫做相似三角形。:用符號“∽”表示,讀作“相似于”。:相似三角形的對應(yīng)邊的比叫做相似比。:平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所截成的三角形與原三角形相似。:(1)三
2025-05-16 06:57
【總結(jié)】全等三角形中做輔助線技巧要點(diǎn)大匯總口訣:三角形圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。線段和差及倍半,延長縮短可試驗(yàn)。線段和差不等式,移到同一三角去。三角形中兩中點(diǎn),連接則成中位線。三角形中有中線,延長中線等中線。1、由角平分線想到的輔
2025-06-25 04:37
【總結(jié)】....全等三角形輔助線常見輔助線的作法有以下幾種:1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對折”.2)遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”.3)遇到角平分
2025-03-24 07:41
【總結(jié)】第1頁共3頁八年級數(shù)學(xué)全等三角形輔助線添加之截長補(bǔ)短(全等三角形)拔高練習(xí)試卷簡介:本講測試題共兩個大題,第一題是證明題,共7個小題,每小題10分;第二題解答題,2個小題,每小題15分。學(xué)習(xí)建議:本講內(nèi)容是三角形全等的判定——輔助線添加之截長補(bǔ)短,其中通過截長補(bǔ)短來添加輔助線是重點(diǎn),也是難點(diǎn)。希望
2025-08-11 22:00
【總結(jié)】構(gòu)造等腰三角形解題的輔助線做法呂海艷等腰三角形是一種特殊的三角形,常與全等三角形的相關(guān)知識結(jié)合在一起考查。在許多幾何問題中,通常需要構(gòu)造等腰三角形才能使問題獲解。那么如何構(gòu)造等腰三角形呢?一般有以下四種方法:(1)依據(jù)平行線構(gòu)造等腰三角形;(2)依據(jù)倍角關(guān)系構(gòu)造等腰三角形;(3)依據(jù)角平分線+垂線構(gòu)造等腰三角形;(4)依據(jù)120°角或60°角,常補(bǔ)形構(gòu)
2025-03-25 04:37
【總結(jié)】證明三角形全等的常見題型全等三角形是初中幾何的重要內(nèi)容之一,全等三角形的學(xué)習(xí)是幾何入門最關(guān)鍵的一步,這部分內(nèi)容學(xué)習(xí)的好壞直接影響著今后的學(xué)習(xí)。而一些初學(xué)的同學(xué),雖然學(xué)習(xí)了幾種判定三角形全等的公理和推論,但往往仍不知如何根據(jù)已知條件證明兩個三角形全等。在輔導(dǎo)時(shí)可以抓住以下幾種證明三角形全等的常見題型,進(jìn)行分析。一、已知一邊與其一鄰角對應(yīng)相等1.證已知角的另一
2024-11-19 19:13
【總結(jié)】三角形全等的判定第1課時(shí)全等三角形與全等三角形的判定條件1.的兩個三角形叫做全等三角形,全等三角形的對應(yīng)邊____,對應(yīng)角____.2.兩個三角形只有一組或兩組對應(yīng)相等的元素,這兩個三角形全等;兩個三角形有三組對應(yīng)相等的元素,這兩個三角形
2024-11-09 04:27
【總結(jié)】ABCA’B’C’lAABBCCA’’A’’’B’’B”’C’’(C’’’)圖形經(jīng)過軸對稱、平移、旋轉(zhuǎn)后,位置發(fā)生了變化,但形狀、大小不變。全等三角形性質(zhì)判定對應(yīng)邊相等對應(yīng)角相
2025-07-26 19:10
【總結(jié)】第一篇:證明三角形全等的常見題型 證明三角形全等的常見題型 全等三角形是初中幾何的重要內(nèi)容之一,全等三角形的學(xué)習(xí)是幾何入門最關(guān)鍵的一步,這部分內(nèi)容學(xué)習(xí)的好壞直接影響著今后的學(xué)習(xí)。而一些初學(xué)的同學(xué),...
2024-10-25 12:28
【總結(jié)】山亭育才中學(xué)翟夫連①∵AD是△ABC的中線∴BD=CDABDC②S△ABD=S△ADC(等底同高)③中線的取值范圍常用的輔助線(見中線加倍延長構(gòu)造全等三角形)AB-AC2AB+AC2AD1中線1中線④重心(三
2024-11-09 22:05
【總結(jié)】全等三角形作輔助線經(jīng)典例題常見輔助線的作法有以下幾種:1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對折”.2)遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”.3)遇到角平分線,可以自角平分線上的某一點(diǎn)向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對折”,所考知識點(diǎn)
2025-03-24 07:38
【總結(jié)】全等三角形及其輔助線作法常見輔助線的作法有以下幾種:1)遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”(或構(gòu)造平行線的X型全等).2)遇到角平分線,一是可以自角平分線上的某一點(diǎn)向角的兩邊作垂線,二是在角的兩邊上截取相同的線段,構(gòu)成全等。利用的思維模式是三角形全等變換中的“對折”,也是運(yùn)用了角的對稱性。3)截長法與
2025-06-23 21:59