【總結(jié)】第二類(lèi)換元積分法?二、例題分類(lèi)講解?一、第二類(lèi)換元積分法思考:求??dxx11該不定積分不能直接積分,也不屬于常見(jiàn)的湊微分法的類(lèi)型。該積分矛盾在于被積函數(shù)含有根式,為了去掉根號(hào),我們可以做變量代換,令tx?第二換元積分法解令tx?則2tx?tdtd
2025-08-05 15:45
【總結(jié)】第一篇:第八章多元函數(shù)的微分法及其應(yīng)用 第八章多元函數(shù)的微分法及其應(yīng)用 §1多元函數(shù)概念 一、、求下列函數(shù)的定義域: 1、2、三、求下列極限: 1、(0) 2、() 四、:當(dāng)沿著x軸趨于...
2025-10-31 22:38
【總結(jié)】第三節(jié)定積分的應(yīng)用一、直角坐標(biāo)系中圖形的面積:求由曲線(xiàn)y=f(x)(f(x)≥0),直線(xiàn)x=a,x=b(ab),及x軸所圍成的平面圖形的面積A。aoxyby=f(x)??badxxfA)(aoxyby=f(x)??Aaoxy
2025-10-07 21:13
【總結(jié)】多元函數(shù)積分學(xué)習(xí)題課一、多元函數(shù)積分學(xué)內(nèi)容的復(fù)習(xí)(略)二、多元函數(shù)積分學(xué)有關(guān)例題例1比較下列積分的大?。???Ddyx?2)(與???Ddyx?3)(其中D:2)1()2(22????yx0yx(3,0)(1,0)(0,1)1??yx.D解:在區(qū)域D內(nèi)
2025-02-21 12:49
【總結(jié)】七、多元函數(shù)積分學(xué)§7.1二重積分A內(nèi)容要點(diǎn)(一).二重積分的概念與性質(zhì)1.定義設(shè)是定義在有界閉區(qū)域上的有界函數(shù),如果對(duì)任意分割為個(gè)小區(qū)域?qū)π^(qū)域上任意取一點(diǎn)都有存在,(其中又表示為小區(qū)域的面積,為小區(qū)域的直徑,而)則稱(chēng)這個(gè)極限值為在區(qū)域上的二重積分記以,這時(shí)就稱(chēng)在上可積。如
2025-08-18 16:26
【總結(jié)】西南民族大學(xué)經(jīng)濟(jì)學(xué)院毛瑞華微積分(2021~2021下)1§多元復(fù)合函數(shù)與隱函數(shù)微分法一、多元復(fù)合函數(shù)微分法定理設(shè)z=f(u,v)在(u,v)處可微,u=u(x,y),v=v(x,y)在(x,y)處的偏導(dǎo)數(shù)存在,則復(fù)合函數(shù)z=f[u(x,y),v(x,y)]在(x,y)處的偏導(dǎo)數(shù)
2025-10-10 14:52
【總結(jié)】如果在方程式0),,(?zyxF中,2),(Ryx????時(shí),相應(yīng)地總有滿(mǎn)足該方程的唯一的z值存在,則稱(chēng)該方程在?內(nèi)確定隱函數(shù).),(yxfz?注意,隱函數(shù)不一定都能顯化.隱函數(shù)(二元)的概念第如果在方程式0),(?uXF中,nRX????時(shí),相
2025-04-28 23:03
【總結(jié)】1.計(jì)算下列定積分:⑴;【解法一】應(yīng)用牛頓-萊布尼茲公式?!窘夥ǘ繎?yīng)用定積分換元法令,則,當(dāng)從單調(diào)變化到時(shí),從單調(diào)變化到,于是有。⑵;【解法一】應(yīng)用牛頓-萊布尼茲公式?!窘夥ǘ繎?yīng)用定積分換元法令,則,當(dāng)從單調(diào)變化到1時(shí),從1單調(diào)變化到16,于是有。⑶;【解法一】應(yīng)用牛頓-萊布尼茲公式?!窘夥ǘ繎?yīng)用定積分
2025-08-05 05:32
【總結(jié)】多元函數(shù)微分法講義第十章多元函數(shù)微分學(xué)§ 多元函數(shù):一、平面點(diǎn)集1、定義:把全體有序?qū)崝?shù)對(duì)組成的集合,稱(chēng)為二維空間,記為(或),(實(shí)際上這里的二維空間的概念就是解析幾何中的二維空間概念)。下面我們看一看這里的二維空間有一個(gè)什么樣的幾何意義,顯然都唯一對(duì)應(yīng)著直角坐標(biāo)平面的一個(gè)點(diǎn),反之然,∴中的有序數(shù)對(duì)與直角平面上的點(diǎn)是一一對(duì)應(yīng)的,它們的本質(zhì)是一樣的,
2025-04-17 00:25
【總結(jié)】2問(wèn)題?xdx2cos,2sinCx??解決方法利用復(fù)合函數(shù),設(shè)置中間變量.過(guò)程令xt2?,21dtdx???xdx2cosdtt??cos21Ct??sin21.2sin21Cx??一、第一類(lèi)換元法3在一般情況下:設(shè)),()(ufuF??則.)()(???C
2025-09-25 20:47
【總結(jié)】(1826-1866)只有在微積分發(fā)明之后,物理學(xué)才成為一門(mén)科學(xué).只有在認(rèn)識(shí)到自然現(xiàn)象是連續(xù)的之后,構(gòu)造抽象模型的努力才取得了成功。黎曼多元函數(shù)積分學(xué)定積分(DefiniteIntegral)二重積分(DoubleIntegral)三重積分(Tri
2025-02-18 23:10
【總結(jié)】不定積分的概念與性質(zhì)不定積分的換元積分法不定積分的分部積分法積分表的用法第4章不定積分結(jié)束前頁(yè)結(jié)束后頁(yè)又如d(secx)=secxtanxdx,所以secx是secxtanx的原函數(shù).定義設(shè)f(x)在某區(qū)間上有定義,如果對(duì)該區(qū)間的任意點(diǎn)x
2025-07-18 00:00
【總結(jié)】問(wèn)題cos2xdx?sin2,xC??解決方法利用復(fù)合函數(shù),設(shè)置中間變量.過(guò)程令2ux?1,2dxdu??cos2xdx?1cos2udu??1sin2uC??.2sin21Cx??一、第一類(lèi)換元法2ux?du??2udxdx??
2025-07-25 16:36
【總結(jié)】第六節(jié)復(fù)習(xí)目錄上頁(yè)下頁(yè)返回結(jié)束一、空間曲線(xiàn)的切線(xiàn)與法平面二、曲面的切平面與法線(xiàn)多元函數(shù)微分學(xué)的幾何應(yīng)用第九章復(fù)習(xí):平面曲線(xiàn)的切線(xiàn)與法線(xiàn)已知平面光滑曲線(xiàn)),(00yx切線(xiàn)方程0yy?法線(xiàn)方程0yy?若平面光滑曲線(xiàn)方程為),(),(ddyxFyxFxy
2025-01-08 13:23
【總結(jié)】1多元函數(shù)的微積分主要內(nèi)容:一.多元函數(shù)的概念二.二元函數(shù)的極限和連續(xù)三.偏導(dǎo)數(shù)的概念及簡(jiǎn)單計(jì)算四.全微分五.空間曲線(xiàn)的切線(xiàn)與法平面六.曲面的切平面與法線(xiàn)七.多元函數(shù)的極值2設(shè)D是平面上的一個(gè)點(diǎn)集.如果對(duì)于每個(gè)點(diǎn)P(x,y)?D,變量z按照一定法則總有確定的值和它對(duì)應(yīng),
2025-04-28 23:40