【總結(jié)】
2024-11-12 17:10
【總結(jié)】1等差數(shù)列求和公式:(1)Sn=n(a1+an)/2(2)Sn=na1+n(n-1)d/22等比數(shù)列求和公式:(1)Sn=1-qa1(1-qn)q≠1q≠1(2)Sn=1-qa1-anq當(dāng)q=1時(shí),Sn=na1練習(xí):求和1.1+2+3+……+n答案:Sn=n
2025-05-12 17:19
【總結(jié)】等差數(shù)列性質(zhì)總結(jié):(d為常數(shù))();2.等差數(shù)列通項(xiàng)公式:,首項(xiàng):,公差:d,末項(xiàng):推廣:.從而;3.等差中項(xiàng)(1)如果,,成等差數(shù)列,那么叫做與的等差中項(xiàng).即:或(2)等差中項(xiàng):數(shù)列是等差數(shù)列4.等差數(shù)列的前n項(xiàng)和公式:(其中A、B是常數(shù),所以當(dāng)d≠0時(shí),Sn是關(guān)于n的二次式且常數(shù)項(xiàng)為0)特別地,當(dāng)項(xiàng)數(shù)
2025-06-30 04:17
【總結(jié)】等差數(shù)列和等比數(shù)列的復(fù)習(xí)一、知識(shí)要點(diǎn)1.等差數(shù)列和等比數(shù)列是兩種最基本,最常見的數(shù)列.應(yīng)熟練掌握等差、等比數(shù)列的定義、通項(xiàng)公式、前n項(xiàng)和公式,通過通項(xiàng)公式與前n項(xiàng)和公式聯(lián)系著五個(gè)基本量a1,d(或q),n,an,Sn,“已知其三必可求其余二”,將等差、等比數(shù)列問題,轉(zhuǎn)化為關(guān)于這五個(gè)基本量的運(yùn)算問題,是常見的解題方法.2.等差、等比數(shù)列具有很多特殊性質(zhì),在運(yùn)算時(shí),除轉(zhuǎn)化為基本量
2025-06-07 21:08
【總結(jié)】等差、等比數(shù)列的求和公式一、考綱要求:掌握等差的求和公式、等比數(shù)列的求和公式.二、教學(xué)目標(biāo):1、掌握等差數(shù)列前n項(xiàng)和公式及其推導(dǎo)過程2、掌握等比數(shù)列前n項(xiàng)和公式及其推導(dǎo)過程3、能熟練利用公式解決相關(guān)問題三、重點(diǎn)難點(diǎn)掌握公式的推導(dǎo)方法和公式的應(yīng)用教學(xué)過程:知識(shí)梳理:1.(1)等差數(shù)列的前項(xiàng)和(倒序相加法):公式1:公式2:;(2)若數(shù)
2025-06-07 21:56
【總結(jié)】等比數(shù)列1、觀察下列數(shù)列,指出它們的共同特征:(1)1,2,4,8,….(2)….(3)1,20,202,203,….(4)活期存入10000元,年利率是%,按照復(fù)利,5年內(nèi)各年末本利和分別是10000(1+),10000(1+)2,10000(1+)3,1
2025-07-21 17:18
【總結(jié)】§等差數(shù)列一.課程目標(biāo);;,并能用等差數(shù)列的有關(guān)知識(shí)解決相應(yīng)的問題;.二.知識(shí)梳理如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,公差通常用字母d表示.數(shù)學(xué)語言表達(dá)式:an+1-an=d(n∈N*,d為常數(shù)),或an-an-1=d(n≥2,d為常數(shù)).2.
2025-03-25 06:56
【總結(jié)】2020屆高考數(shù)學(xué)復(fù)習(xí)強(qiáng)化雙基系列課件36《等差數(shù)列與等比數(shù)列的綜合問題》課前熱身:30,37,32,35,34,33,36,(),38的特點(diǎn),在括號(hào)內(nèi)適當(dāng)?shù)囊粋€(gè)數(shù)是_____.x的方程x2-x+a=0和x2-x+b=0(a,b∈R且a≠b)的四
2024-11-11 08:49
【總結(jié)】歡迎交流唯一QQ1294383109希望大家互相交流等差數(shù)列、等比數(shù)列一、選擇題1.在等差數(shù)列{an}中,a2=2,a3=4,則a10=()A.12B.14C.16D.18解析:選d,則d=a3-a2=2,因而a10=a2+8d=2+2×
2025-08-13 20:05
【總結(jié)】第三節(jié)等比數(shù)列等比數(shù)列如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的______的比都等于_______常數(shù)公比等比數(shù)列定義中的_____叫作等比數(shù)列的公比,常用字母q表示(q≠0)公式表示{an}為等比數(shù)列?(n∈N+,q為非零常數(shù))等比中項(xiàng)如果在a與b中插入一個(gè)數(shù)G,使得a,G,b
2025-01-15 06:55
【總結(jié)】一、等差等比數(shù)列基礎(chǔ)知識(shí)點(diǎn)(一)知識(shí)歸納:1.概念與公式:①等差數(shù)列:1°.定義:若數(shù)列稱等差數(shù)列;2°.通項(xiàng)公式:3°.前n項(xiàng)和公式:公式:②等比數(shù)列:1°.定義若數(shù)列(常數(shù)),則稱等比數(shù)列;2°.通項(xiàng)公式:3°.前n項(xiàng)和公式:當(dāng)q=1時(shí)2.簡單性質(zhì):①首尾項(xiàng)性質(zhì):設(shè)數(shù)列1°.若是等差
【總結(jié)】等差數(shù)列與等比數(shù)列總結(jié)一、等差數(shù)列:一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,公差常用小寫字母d表示;等差中項(xiàng),如果,那么A叫做a與b的等差中項(xiàng);如果三個(gè)數(shù)成等差數(shù)列,那么等差中項(xiàng)等于另兩項(xiàng)的算術(shù)平均數(shù);等差數(shù)列的通項(xiàng)公式:;等差數(shù)列的遞推公式:;等差數(shù)列的前n項(xiàng)和公式:===
2025-06-29 15:47
【總結(jié)】數(shù)列、極限、數(shù)學(xué)歸納法·等差、等比數(shù)列綜合問題·教案教學(xué)目標(biāo)1.熟練運(yùn)用等差、等比數(shù)列的概念、通項(xiàng)公式、前n項(xiàng)和公式以及有關(guān)性質(zhì),分析和解決等差、等比數(shù)列的綜合問題.2.突出方程思想的應(yīng)用,引導(dǎo)學(xué)生選擇簡捷合理的運(yùn)算途徑,提高運(yùn)算速度和運(yùn)算能力.教學(xué)重點(diǎn)與難點(diǎn)1.用方程的觀點(diǎn)認(rèn)識(shí)等差、等比數(shù)列的基礎(chǔ)知識(shí)、從本質(zhì)上掌握公式.2.解決應(yīng)用問題時(shí),分
2025-06-07 19:16
【總結(jié)】等差數(shù)列、等比數(shù)列測試題班級(jí)_________姓名__________學(xué)號(hào)___________一、選擇題1.一個(gè)等差數(shù)列的第一項(xiàng)是32,若這個(gè)數(shù)列從15項(xiàng)開始小于1,那么這個(gè)數(shù)列的公差d的取值范圍是()A.d1431B.d
2024-11-12 03:39
【總結(jié)】《走向高考》高考總復(fù)習(xí)·數(shù)學(xué)第3章數(shù)列首頁上頁下頁末頁知識(shí)梳理規(guī)律方法提煉課后強(qiáng)化作業(yè)課堂題型設(shè)計(jì)《走向高考》高考總復(fù)習(xí)·數(shù)學(xué)
2025-09-20 10:36